
Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Chapter 9

Virtual-Memory Management

9.2 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Chapter 9: Virtual-Memory Management

 Background

 Demand Paging

 Copy-on-Write

 Page Replacement

 Allocation of Frames

 Thrashing

 Memory-Mapped Files

 Allocating Kernel Memory

 Other Considerations

 Operating-System Examples

9.3 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Objectives

 To describe the benefits of a virtual memory system

 To explain the concepts of demand paging, page-replacement algorithms, and allocation of page frames

 To discuss the principle of the working-set model

9.4 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Background

 Code needs to be in memory to execute, but entire program

rarely used

 Error code, unusual routines, large data structures

 Entire program code not needed at same time

 Consider ability to execute partially-loaded program

 Program no longer constrained by limits of physical

memory

 Program and programs could be larger than physical

memory

9.5 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Background

 Virtual memory – separation of user logical memory from physical memory

 Only part of the program needs to be in memory for execution

 Logical address space can therefore be much larger than physical address space

 Allows address spaces to be shared by several processes

 Allows for more efficient process creation

 More programs running concurrently

 Less I/O needed to load or swap processes

 Virtual memory can be implemented via:

 Demand paging

 Demand segmentation

9.6 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Virtual Memory That is

Larger Than Physical Memory

9.7 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Virtual-address Space

9.8 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Virtual Address Space

 Enables sparse address spaces with holes left for growth, dynamically linked libraries, etc

 System libraries shared via mapping into virtual address space

 Shared memory by mapping pages read-write into virtual address space

 Pages can be shared during fork(), speeding process creation

9.9 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Shared Library Using Virtual Memory

9.10 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

A Procedure to Handle A Page Fault

 Pure Demand Paging:

 Never bring in a page into the memory until it is
required!

 Pre-Paging

 Bring into the memory all of the pages that “will” be
needed at one time!

 Locality of reference

9.11 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Demand Paging

 Could bring entire process into memory at load time

 Or bring a page into memory only when it is needed

 Less I/O needed, no unnecessary I/O

 Less memory needed

 Faster response

 More users

 Page is needed reference to it

 invalid reference abort

 not-in-memory bring to memory

 Lazy swapper – never swaps a page into memory unless page will be needed

 Swapper that deals with pages is a pager

9.12 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Transfer of a Paged Memory to

Contiguous Disk Space

9.13 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated
(v in-memory – memory resident, i not-in-memory)

 Initially valid–invalid bit is set to i on all entries

 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry

is I page fault

v

v

v

v

i

i

i

….

Frame # valid-invalid bit

page table

9.14 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Page Table When Some Pages

Are Not in Main Memory

9.15 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Page Fault

If there is a reference to a page, first reference to that page will
trap to operating system:

page fault

1. Operating system looks at another table to decide:

 Invalid reference abort

 Just not in memory

2. Get empty frame

3. Swap page into frame via scheduled disk operation

4. Reset tables to indicate page now in memory

5. Set validation bit = v

6. Restart the instruction that caused the page fault

9.16 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Aspects of Demand Paging

 Extreme case – start process with no pages in memory

 OS sets instruction pointer to first instruction of process, non-memory-resident -> page fault

 And for every other process pages on first access

 Pure demand paging

 Actually, a given instruction could access multiple pages -> multiple page faults

 Pain decreased because of locality of reference

 Hardware support needed for demand paging

 Page table with valid / invalid bit

 Secondary memory (swap device with swap space)

 Instruction restart

9.17 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Instruction Restart

Consider an instruction that could access several different

locations

 block move

 auto increment/decrement location

 Restart the whole operation?

 What if source and destination overlap?

9.18 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Crucial issues

 Example 1 – Cost in restarting an instruction

 Assembly Instruction: Add a, b, c

 Only a short job!

Re-fetch the instruction, decode, fetch

operands, execute, save, etc

 Strategy:

Get all pages and restart the instruction from

the beginning!

9.19 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Crucial Issues

 Example 2 – Block-Moving

Assembly Instruction

MVC x, y, 256

– IBM System 360/ 370

Characteristics

– More expensive

– “self-modifying” “operands”

Solutions:

– Pre-load pages

– Pre-save & recover before

page-fault services

x:

y:

A
B
C
D

A
B
C
D

Page fault!
Return??
X is
destroyed

MVC x, y, 4

9.20 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Crucial Issues

(R2) +

- (R3)

Page Fault

When the page fault is serviced,
R2, R3 are modified!

- Undo Effects!

 Example 3 – Addressing Mode

MOV (R2)+, -(R3)

9.21 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Steps in Handling a Page Fault

9.22 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Performance of Demand Paging

Stages in Demand Paging

1. Trap to the operating system

2. Save the user registers and process state

3. Determine that the interrupt was a page fault

4. Check that the page reference was legal and determine the location of the page on the disk

5. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is serviced

2. Wait for the device seek and/or latency time

3. Begin the transfer of the page to a free frame

6. While waiting, allocate the CPU to some other user

7. Receive an interrupt from the disk I/O subsystem (I/O completed)

8. Save the registers and process state for the other user

9. Determine that the interrupt was from the disk

10. Correct the page table and other tables to show page is now in memory

11. Wait for the CPU to be allocated to this process again

12. Restore the user registers, process state, and new page table, and then resume the interrupted

instruction

9.23 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Performance of Demand Paging (Cont.)

 Page Fault Rate 0 p 1

 if p = 0 no page faults

 if p = 1, every reference is a fault

 Effective Access Time (EAT)

EAT = (1 – p) x memory access

+ p (page fault overhead

+ swap page out

+ swap page in

+ restart overhead

)

9.24 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Demand Paging Example

 Memory access time = 200 nanoseconds

 Average page-fault service time = 8 milliseconds

 EAT = (1 – p) x 200 + p (8 milliseconds)

= (1 – p x 200 + p x 8,000,000

= 200 + p x 7,999,800

 If one access out of 1,000 causes a page fault, then

EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!

 If want performance degradation < 10 percent

 220 > 200 + 7,999,800 x p

20 > 7,999,800 x p

 p < .0000025

 < one page fault in every 400,000 memory accesses

9.25 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Demand Paging Optimizations

 How to keep the page fault rate low?

 Effective Access Time ≈ 100ns + 24,999,900ns * p

 Handling of Swap Space – A Way to Reduce Page Fault Time

(pft)

 Disk I/O to swap space is generally faster than that to the file

system.

Preload processes into the swap space before they start

up.

Demand paging from file system but do page replacement

to the swap space. (BSD UNIX)

 Demand page in from program binary on disk, but discard rather

than paging out when freeing frame

 Used in Solaris and current BSD

9.26 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Process Creation

 Virtual memory allows other benefits during process creation:

- Copy-on-Write

- Memory-Mapped Files (later)

9.27 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Copy-on-Write

 Copy-on-Write (COW) allows both parent and child processes to initially share the same pages in

memory

 If either process modifies a shared page, only then is the page copied

 COW allows more efficient process creation as only modified pages are copied

 In general, free pages are allocated from a pool of zero-fill-on-demand pages

 Why zero-out a page before allocating it?

 vfork() variation on fork() system call has parent suspend and child using copy-on-write address

space of parent

 Designed to have child call exec()

 Very efficient

9.28 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Before Process 1 Modifies Page C

9.29 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

After Process 1 Modifies Page C

9.30 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

What Happens if There is no Free Frame?

 Used up by process pages

 Also in demand from the kernel, I/O buffers, etc

 How much to allocate to each?

 Page replacement – find some page in memory, but not really in use, page it out

 Algorithm – terminate? swap out? replace the page?

 Performance – want an algorithm which will result in minimum number of page faults

 Same page may be brought into memory several times

9.31 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Page Replacement

 Prevent over-allocation of memory by modifying page-fault

service routine to include page replacement

 Use modify (dirty) bit to reduce overhead of page transfers

– only modified pages are written to disk

 Page replacement completes separation between logical

memory and physical memory – large virtual memory can

be provided on a smaller physical memory

9.32 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Need For Page Replacement

9.33 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:

- If there is a free frame, use it

- If there is no free frame, use a page replacement algorithm to select a victim frame

- Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the page and frame tables

4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault – increasing EAT

9.34 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Page Replacement

9.35 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Page and Frame Replacement Algorithms

 Frame-allocation algorithm determines

 How many frames to give each process

 Which frames to replace

 Page-replacement algorithm

 Want lowest page-fault rate on both first access and re-access

 Evaluate algorithm by running it on a particular string of memory

references (reference string) and computing the number of page faults on

that string

 String is just page numbers, not full addresses

 Repeated access to the same page does not cause a page fault

 In all our examples, the reference string is

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

9.36 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Graph of Page Faults Versus

The Number of Frames

9.37 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

First-In-First-Out (FIFO) Algorithm

 Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

 3 frames (3 pages can be in memory at a time per process)

 Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5

 Adding more frames can cause more page faults!

 Belady’s Anomaly

 How to track ages of pages?

 Just use a FIFO queue

7

0

1

1

2

3

2

3

0

4 0 7

2 1 0

3 2 1

15 page faults

9.38 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

FIFO Page Replacement

9.39 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

FIFO Illustrating Belady’s Anomaly

9.40 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Optimal Algorithm

 Replace page that will not be used for longest period of time

 9 is optimal for the example on the next slide

 How do you know this?

 Can’t read the future

 Used for measuring how well your algorithm performs

9.41 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Optimal Page Replacement

9.42 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Least Recently Used (LRU) Algorithm

 Use past knowledge rather than future

 Replace page that has not been used in the most amount of time

 Associate time of last use with each page

 12 faults – better than FIFO but worse than OPT

 Generally good algorithm and frequently used

 But how to implement?

9.43 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

LRU Algorithm (Cont.)

 Counter implementation

 Every page entry has a counter; every time page is referenced through this entry, copy the clock into

the counter

 When a page needs to be changed, look at the counters to find smallest value

 Search through table needed

 Stack implementation

 Keep a stack of page numbers in a double link form:

 Page referenced:

 move it to the top

 requires 6 pointers to be changed

 But each update more expensive

 No search for replacement

 LRU and OPT are cases of stack algorithms that don’t have Belady’s Anomaly

9.44 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Use Of A Stack to Record The

Most Recent Page References

9.45 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

LRU Approximation Algorithms

 LRU needs special hardware and still slow

 Reference bit

 With each page associate a bit, initially = 0

 When page is referenced bit set to 1

 Replace any with reference bit = 0 (if one exists)

 We do not know the order, however

 Second-chance algorithm

 Generally FIFO, plus hardware-provided reference bit

 Clock replacement

 If page to be replaced has

 Reference bit = 0 -> replace it

 reference bit = 1 then:

– set reference bit 0, leave page in memory

– replace next page, subject to same rules

9.46 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Second-Chance (clock) Page-Replacement Algorithm

9.47 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Counting Algorithms

 Keep a counter of the number of references that have been made to each page

 Not common

 LFU Algorithm: replaces page with smallest count

 MFU Algorithm: based on the argument that the page with the smallest count was probably just brought in

and has yet to be used

9.48 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Page-Buffering Algorithms

 Keep a pool of free frames, always

 Then frame available when needed, not found at fault time

 Read page into free frame and select victim to evict and add to free

pool

 When convenient, evict victim

 Possibly, keep list of modified pages

 When backing store otherwise idle, write pages there and set to non-

dirty

 Possibly, keep free frame contents intact and note what is in them

 If referenced again before reused, no need to load contents again

from disk

 Generally useful to reduce penalty if wrong victim frame selected

9.49 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Applications and Page Replacement

 All of these algorithms have OS guessing about future page

access

 Some applications have better knowledge – i.e. databases

 Memory intensive applications can cause double buffering

 OS keeps copy of page in memory as I/O buffer

 Application keeps page in memory for its own work

 Operating system can given direct access to the disk, getting out

of the way of the applications

 Raw disk mode

 Bypasses buffering, locking, etc

9.50 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Allocation of Frames

 Each process needs minimum number of frames

 Example: IBM 370 – 6 pages to handle SS MOVE

instruction:

 instruction is 6 bytes, might span 2 pages

 2 pages to handle from

 2 pages to handle to

 Maximum of course is total frames in the system

 Two major allocation schemes

 fixed allocation

 priority allocation

 Many variations

9.51 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Fixed Allocation

 Equal allocation – For example, if there are 100 frames (after allocating frames for the OS) and 5

processes, give each process 20 frames

 Keep some as free frame buffer pool

 Proportional allocation – Allocate according to the size of process

 Dynamic as degree of multiprogramming, process sizes change

m
S

s
pa

m

sS

ps

i
ii

i

ii

 for allocation

frames of number total

 process of size

m 64

s1 10

s2 127

a1
10

137
 64 5

a2
127

137
 64 59

9.52 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Priority Allocation

 Use a proportional allocation scheme using priorities rather than size

 If process Pi generates a page fault,

 select for replacement one of its frames

 select for replacement a frame from a process with lower priority number

9.53 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Global vs. Local Allocation

 Global replacement – process selects a replacement frame from the set of all frames; one process can

take a frame from another

 But then process execution time can vary greatly

 But greater throughput so more common

 Local replacement – each process selects from only its own set of allocated frames

 More consistent per-process performance

 But possibly underutilized memory

9.54 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Non-Uniform Memory Access

 So far all memory accessed equally

 Many systems are NUMA – speed of access to memory varies

 Consider system boards containing CPUs and memory, interconnected over a system bus

 Optimal performance comes from allocating memory “close to” the CPU on which the thread is scheduled

 And modifying the scheduler to schedule the thread on the same system board when possible

 Solved by Solaris by creating lgroups

 Structure to track CPU / Memory low latency groups

 Used my schedule and pager

 When possible schedule all threads of a process and allocate all memory for that process within the

lgroup

9.55 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Thrashing

 If a process does not have “enough” pages, the page-fault rate is very high

 Page fault to get page

 Replace existing frame

 But quickly need replaced frame back

 This leads to:

 Low CPU utilization

 Operating system thinking that it needs to increase the degree of multiprogramming

 Another process added to the system

 Thrashing a process is busy swapping pages in and out

9.56 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Thrashing (Cont.)

9.57 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Demand Paging and Thrashing

 Why does demand paging work?

Locality model

 Process migrates from one locality to another

 Localities may overlap

 Why does thrashing occur?

 size of locality > total memory size

 Limit effects by using local or priority page replacement

9.58 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Locality In A Memory-Reference Pattern

9.59 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Working-Set Model

 working-set window a fixed number of page references

Example: 10,000 instructions

 WSSi (working set of Process Pi) =

total number of pages referenced in the most recent (varies in time)

 if too small will not encompass entire locality

 if too large will encompass several localities

 if = will encompass entire program

 D = WSSi total demand frames

 Approximation of locality

 if D > m Thrashing

 Policy if D > m, then suspend or swap out one of the processes

9.60 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Working-set model

9.61 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Keeping Track of the Working Set

 Approximate with interval timer + a reference bit

 Example: = 10,000

 Timer interrupts after every 5000 time units

 Keep in memory 2 bits for each page

 Whenever a timer interrupts copy and sets the values of all reference bits to 0

 If one of the bits in memory = 1 page in working set

 Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1000 time units

9.62 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Page-Fault Frequency

 More direct approach than WSS

 Establish “acceptable” page-fault frequency rate and use local replacement policy

 If actual rate too low, process loses frame

 If actual rate too high, process gains frame

9.63 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Working Sets and Page Fault Rates

9.64 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated as routine

memory access by mapping a disk block to a page in memory

 A file is initially read using demand paging

 A page-sized portion of the file is read from the file system into a

physical page

 Subsequent reads/writes to/from the file are treated as ordinary

memory accesses

 Simplifies and speeds file access by driving file I/O through memory
rather than read() and write() system calls

 Also allows several processes to map the same file allowing the

pages in memory to be shared

 But when does written data make it to disk?

 Periodically and / or at file close() time

 For example, when the pager scans for dirty pages

9.65 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Memory-Mapped File Technique for all I/O

 Some OSes use memory mapped files for standard I/O

 Process can explicitly request memory mapping a file via mmap() system call

 Now file mapped into process address space

 For standard I/O (open(), read(), write(), close()), mmap anyway

 But map file into kernel address space

 Process still does read() and write()

 Copies data to and from kernel space and user space

 Uses efficient memory management subsystem

 Avoids needing separate subsystem

 COW can be used for read/write non-shared pages

 Memory mapped files can be used for shared memory (although again via separate

system calls)

9.66 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Memory Mapped Files

9.67 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Memory-Mapped Shared Memory

in Windows

9.68 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Allocating Kernel Memory

 Treated differently from user memory

 Often allocated from a free-memory pool

 Kernel requests memory for structures of varying sizes

 Some kernel memory needs to be contiguous

I.e. for device I/O

9.69 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Buddy System

 Allocates memory from fixed-size segment consisting of physically-contiguous pages

 Memory allocated using power-of-2 allocator

 Satisfies requests in units sized as power of 2

 Request rounded up to next highest power of 2

 When smaller allocation needed than is available, current chunk split into two buddies of next-lower

power of 2

 Continue until appropriate sized chunk available

 For example, assume 256KB chunk available, kernel requests 21KB

 Split into AL and Ar of 128KB each

 One further divided into BL and BR of 64KB

– One further into CL and CR of 32KB each – one used to satisfy request

 Advantage – quickly coalesce unused chunks into larger chunk

 Disadvantage - fragmentation

9.70 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Buddy System Allocator

9.71 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Allocating Kernel Memory

Slab Allocator
 Alternate strategy

 Slab is one or more physically contiguous pages

 Cache consists of one or more slabs

 Single cache for each unique kernel data structure

 Each cache filled with objects – instantiations of the data

structure

 When cache created, filled with objects marked as free

 When structures stored, objects marked as used

 If slab is full of used objects, next object allocated from empty slab

 If no empty slabs, new slab allocated

 Benefits include no fragmentation, fast memory request satisfaction

9.72 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Slab Allocation

9.73 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Other Considerations

Prepaging
Prepaging

 To reduce the large number of page faults that occurs at

process startup

 Prepage all or some of the pages a process will need,

before they are referenced

 But if prepaged pages are unused, I/O and memory was

wasted

 Assume s pages are prepaged and α of the pages is used

 Is cost of s * α save pages faults > or < than the cost

of prepaging

s * (1- α) unnecessary pages?

 α near zero prepaging loses

9.74 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Other Issues

Page Size
 Sometimes OS designers have a choice

 Especially if running on custom-built CPU

 Page size selection must take into consideration:

 Fragmentation

 Page table size

 Resolution

 I/O overhead

 Number of page faults

 Locality

 TLB size and effectiveness

 Always power of 2, usually in the range 212 (4,096 bytes) to 222

(4,194,304 bytes)

 On average, growing over time

9.75 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Other Issues

TLB Reach
 TLB Reach - The amount of memory accessible from the TLB

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the TLB

 Otherwise there is a high degree of page faults

 Increase the Page Size

 This may lead to an increase in fragmentation as not all applications require a large page size

 Provide Multiple Page Sizes

 This allows applications that require larger page sizes the opportunity to use them without an

increase in fragmentation

9.76 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Other Issues

Program Structure
 Program structure

 Int[128,128] data;

 Each row is stored in one page

 Program 1

for (j = 0; j <128; j++)

for (i = 0; i < 128; i++)

data[i,j] = 0;

128 x 128 = 16,384 page faults

 Program 2

for (i = 0; i < 128; i++)

for (j = 0; j < 128; j++)

data[i,j] = 0;

128 page faults

9.77 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Other Issues

I/O interlock
 I/O Interlock – Pages must sometimes be locked into memory

 Consider I/O - Pages that are used for copying a file from a device must be locked from being selected for

eviction by a page replacement algorithm

9.78 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Reason Why Frames Used For

I/O Must Be In Memory

9.79 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Operating System Examples

 Windows XP

 Solaris

9.80 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Windows XP

 Uses demand paging with clustering. Clustering brings in pages surrounding the faulting page

 Processes are assigned working set minimum and working set maximum

 Working set minimum is the minimum number of pages the process is guaranteed to have in memory

 A process may be assigned as many pages up to its working set maximum

 When the amount of free memory in the system falls below a threshold, automatic working set trimming

is performed to restore the amount of free memory

 Working set trimming removes pages from processes that have pages in excess of their working set

minimum

9.81 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Solaris

 Maintains a list of free pages to assign faulting processes

 Lotsfree – threshold parameter (amount of free memory) to begin paging

 Desfree – threshold parameter to increasing paging

 Minfree – threshold parameter to being swapping

 Paging is performed by pageout process

 Pageout scans pages using modified clock algorithm

 Scanrate is the rate at which pages are scanned. This ranges from slowscan to fastscan

 Pageout is called more frequently depending upon the amount of free memory available

 Priority paging gives priority to process code pages

9.82 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Solaris 2 Page Scanner

9.83 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Exercise (3/1)

9.84 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Exercise (2/3)

9.85 Silberschatz, Galvin and Gagne © 2013Operating System Concepts Essentials – 9th Edition

Exercise (3/3)

