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Objectives

 To introduce the critical-section problem, whose solutions can be 

used to ensure the consistency of shared data

 To present both software and hardware solutions of the critical-

section problem

 To examine several classical process-synchronization problems

 To explore several tools that are used to solve process 

synchronization problems
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Background

 Processes can execute concurrently

 May be interrupted at any time, partially completing execution

 Concurrent access to shared data may result in data inconsistency

 Maintaining data consistency requires mechanisms to ensure the 

orderly execution of cooperating processes

 Illustration of the problem:

Suppose that we wanted to provide a solution to the consumer-

producer problem that fills all the buffers. We can do so by having 
an integer counter that keeps track of the number of full bufrs.  

Initially, counter is set to 0. It is incremented by the producer 

after it produces a new buffer and is decremented by the consumer 

after it consumes a buffer.
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Producer 

while (true) {

/* produce an item in next produced */ 

while (counter == BUFFER SIZE) ; 

/* do nothing */ 

buffer[in] = next produced; 

in = (in + 1) % BUFFER SIZE; 

counter++; 

} 



5.6 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Consumer

while (true) {

while (counter == 0) 

; /* do nothing */ 

next consumed = buffer[out]; 

out = (out + 1) % BUFFER SIZE;

counter--; 

/* consume the item in next consumed 

*/ 

} 
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Race Condition

 counter++ could be implemented as
register1 = counter

register1 = register1 + 1

counter = register1

 counter-- could be implemented as
register2 = counter

register2 = register2 - 1

counter = register2

 Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6} 
S2: consumer execute register2 = counter {register2 = 5} 
S3: consumer execute register2 = register2 – 1  {register2 = 4} 
S4: producer execute counter = register1         {counter = 6 } 
S5: consumer execute counter = register2        {counter = 4}
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Critical Section Problem

 Consider system of n processes {p0, p1, … pn-1}

 Each process has critical section segment of code

 Process may be changing common variables, updating table, 

writing file, etc

 When one process in critical section, no other may be in its 

critical section

 Critical section problem is to design protocol to solve this

 Each process must ask permission to enter critical section in 

entry section, may follow critical section with exit section, then 

remainder section
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permission request

exit notification

entry section;

critical section;

exit section;

remainder section;

} while (1);

do {

A General Fremework for 

Synchronization

the Critical-Section Problem

Assumptons: 

 Atomic execution of each statement line

 Interleaving execution among processes
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Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical section, 

then no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there 

exist some processes that wish to enter their critical section, then 

the selection of the processes that will enter the critical section next 

cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that 

other processes are allowed to enter their critical sections after a 

process has made a request to enter its critical section and before 

that request is granted

 Assume that each process executes at a nonzero speed 

 No assumption concerning relative speed of the n processes



5.11 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Solution to Critical-Section Problem

1. Two approaches depending on if kernel is preemptive or non-

preemptive 

 Preemptive – allows preemption of process when running in 

kernel mode

 Non-preemptive – runs until exits kernel mode, blocks, or 

voluntarily yields CPU

Essentially free of race conditions in kernel mode
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Peterson’s Solution

 Good algorithmic  description of solving the problem

 Two process solution

 Assume that the load and store instructions are 
atomic; that is, cannot be interrupted

 The two processes share two variables:

 int turn; 

 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the 
critical section

 The flag array is used to indicate if a process is ready 
to enter the critical section. flag[i] = true implies 
that process Pi is ready!
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do { 

flag[i] = true; 

turn = 1-i; 

while (flag[1-i] && turn == 1-i); 

critical section 

flag[i] = false; 

remainder section 

} while (true); 

 Provable that 

1. Mutual exclusion is preserved

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

Algorithm for Process Pi
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Peterson’s Solution

Proof for the mutual exclusion (1/3) 
Lemma 1: When a Pi is is in either the entry or the critical 

sections, flag[i] = true. 

Proof.  Straightforward.                                                   
do { 

1. flag[i] = TRUE; 

2. turn = 1-i; 

3. while (flag[1-i] && turn == 1-i); 

4. critical section 

5. flag[i] = FALSE; 

6. remainder section 

} while (TRUE); 
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Peterson’s Solution

Proof for the mutual exclusion (2/3) 
Lemma 2: Mutual exclusion is maintained by Peterson’s 

algorithm. 

Proof: For convenience, a state is denoted as [t,h,k,f0,f1] 

 t the value of turn, 

 h is the statement index of P0, 

 k the statement index of P1, 

 f0 the value of flag[0], and 

 f1 the value of flag[1]. 

According to lemma 1, we assume that [0,4,4,1,1] happens.  

This implies that P0 enters the critical section last from 

[0,3,4,1,1]. 
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Peterson’s Solution

Proof for the mutual exclusion (3/3) 
There are two possibilities of the predecessor to [0,3,4,1,1].  

 One possible predecessor of [0,3,4,1,1] is [0,3,3,1,1] 

which is impossible.  

 From [0,3,3,1,1], the while loop condition for P1 is 

false.

 The other possible predecessor of [0,3,4,1,1] is 

[?,2,4,1,1] which is also impossible.  

 From [?,2,4,1,1], statement 2 for P0 changes turn to 1 

instead of 0.

Since both possibilities are contradictions, the assumption 

of violation of mutual exclusion is a contradiction. 

Thus the lemma is proven.  
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Peterson’s algorithm 

Backward refutation tree

[turn=0,4,4,1,1]

[turn=0,3,4,1,1]

[turn=0,2,4,1,1] [turn=0,3,3,1,1]

P1: 3. while 

(flag[0] && turn == 0); 

P0: 3. while (flag[1] && turn == 1); 

P0: 2. turn = 1; 
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2014/11/25 stopped here
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 Mutual Exclusion

 The eventual value of turn determines which 
process enters the critical section.

 Progress

 A process can only be stuck in the while loop, 
and the process which can keep it waiting must 
be in its critical sections.

 Bounded Waiting

 Each process wait at most one entry by the other 
process.

Peterson’s Solution

Properties 
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 How to argue for the Bounded Waiting property ? 

[1,3,3,1,1]

 P1: while (flag[0] && turn == 0); 

[1,3,4,1,1] 

 P1: critical section

[1,3,5,1,1]

 P1: flag[1] = false;

[1,3,6,1,0]

 P0: while (flag[1] && turn == 1); 

[1,4,6,1,0]     Wrong argument!

Peterson’s Solution

Properties 
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Bakery Algorithm

 Originally designed for distributed systems

 Token-based 

 Processes which are ready to enter their critical 
section must take a number and wait till the number 
becomes the lowest. 

 Two arrays of local variables

 int number[i]:

Pi’s token number if it is nonzero.

 boolean choosing[i]: 

Pi is taking a number.

The critical-section problem

A solution for n processes
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choosing[i]=true;

number[i]=max(number[0], …number[n-1])+1;

choosing[i]=false;

for (j=0; j < n; j++) {

while choosing[j] ;

while (number[j] != 0 && (number[j],j)<(number[i],i)) ;

}

critical section

number[i]=0;

remainder section

} while (1);

do {

The critical-section problem

A solution for n processes

An observation: If 

 Pi is in its critical  section, and 

 Pk (k != i) has already chosen its number[k], 

then (number[i],i) < (number[k],k).
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Synchronization Hardware
 Many systems provide hardware support for critical section 

code

 All solutions below based on idea of locking

 Protecting critical regions via locks

 Uniprocessors – could disable interrupts

 Currently running code would execute without preemption

 Generally too inefficient on multiprocessor systems

Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware instructions

Atomic = non-interruptible

 Either test memory word and set value

 Or swap contents of two memory words
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do { 

acquire lock 

critical section 

release lock 

remainder section 

} while (TRUE); 

Solution to Critical-section Problem Using Locks
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test_and_set Instruction 

 Definition:

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}
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Solution using test_and_set()

 Shared boolean variable lock, initialized to FALSE

 Solution:

do {

while (test_and_set(&lock)) 

; /* do nothing */ 

/* critical section */ 

lock = false; 

/* remainder section */ 

} while (true); 
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compare_and_swap Instruction

 Definition:

int compare and swap(int *value, int 

expected, int new value) { 

int temp = *value; 

if (*value == expected) 

*value = new value; 

return temp; 

} 
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Solution using compare_and_swap

 Shared Boolean variable lock initialized to FALSE; Each 
process has a local Boolean variable key

 Solution:

do {

while (compare and swap(&lock, 0, 1) != 0) 

; /* do nothing */ 

/* critical section */ 

lock = 0; 

/* remainder section */ 

} while (true); 
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Bounded-waiting Mutual Exclusion with test_and_set

do {

waiting[i] = true;

key = true;

while (waiting[i] && key) 

key = test_and_set(&lock); 

waiting[i] = false; 

/* critical section */ 

j = (i + 1) % n; 

while ((j != i) && !waiting[j]) 

j = (j + 1) % n; 

if (j == i) 

lock = false; 

else 

waiting[j] = false; 

/* remainder section */ 

} while (true); 
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Mutex Locks

 Previous solutions are complicated and generally 
inaccessible to application programmers

 OS designers build software tools to solve critical section 
problem

 Simplest is mutex lock

 Product critical regions with it by first acquire() a lock then 
release() it

 Boolean variable indicating if lock is available or not

 Calls to acquire() and release() must be atomic

 Usually implemented via hardware atomic instructions

 But this solution requires busy waiting

 This lock therefore called a spinlock
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acquire() {

while (!available) ; /* busy wait */ 

available = false;; 

} 

release() { 

available = true; 

} 

do { 

acquire lock

critical section

release lock 

remainder section 

} while (true); 

acquire() and release()
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OS Solutions (馬江帆）
Semaphores

 Synchronization tool that does not require busy waiting 

 Semaphore S – integer variable

 Two standard operations modify S: wait() and signal()

 Originally called P() and V()

 Less complicated

 Can only be accessed via two indivisible (atomic) operations

wait (S) { 

while (S <= 0) ; // busy wait

S--;

}

signal (S) { S++; }
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Semaphore Usage （張文博）

 Counting semaphore – integer value can range over an 

unrestricted domain

 Binary semaphore – integer value can range only between 0 and 1

 Then a mutex lock

 Can implement a counting semaphore S as a binary semaphore

 Can solve various synchronization problems

 Consider P1 and P2 that require S1 to happen before S2

P1: S1; 

signal(synch);

P2: wait(synch); 

S2;
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Semaphore Implementation （羅毅明）

 Must guarantee that no two processes can execute wait 

() and signal () on the same semaphore at the same 

time

 Thus, implementation becomes the critical section problem 

where the wait and signal code are placed in the critical 

section

 Could now have busy waiting in critical section 

implementation

But implementation code is short

Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical 

sections and therefore this is not a good solution
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Semaphore Implementation 

with no Busy waiting 

 With each semaphore there is an associated waiting 

queue

 Each entry in a waiting queue has two data items:

 value (of type integer)

 pointer to next record in the list

 Two operations:

 block – place the process invoking the operation on 

the appropriate waiting queue

 wakeup – remove one of processes in the waiting 

queue and place it in the ready queue
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Semaphore Implementation with 

no Busy waiting (Cont.)

typedef struct{ 

int value; 

struct process *list; 

} semaphore; 

wait(semaphore *S) { 

S->value--; 

if (S->value < 0) {

add this process to S->list; 

block(); 

} 

}

signal(semaphore *S) { 

S->value++; 

if (S->value <= 0) {

remove a process P from S->list; 

wakeup(P); 

} 

} 
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Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely 
for an event that can be caused by only one of the waiting 
processes

 Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

. .

signal(S);          signal(Q);

signal(Q);          signal(S);
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Deadlock and Starvation

 Starvation – indefinite blocking  

 A process may never be removed from the semaphore 
queue in which it is suspended

 Priority Inversion – Scheduling problem when lower-
priority process holds a lock needed by higher-priority 
process

 Solved via priority-inheritance protocol
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Classical Problems of Synchronization

 Classical problems used to test newly-proposed synchronization 

schemes

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem
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Bounded-Buffer Problem

 n buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value n
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Bounded Buffer Problem (Cont.)

 The structure of the producer process

do { 

...

/* produce an item in next_produced */ 

... 

wait(empty); 

wait(mutex); 

...

/* add next produced to the buffer */ 

... 

signal(mutex); 

signal(full); 

} while (true);
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Bounded Buffer Problem (Cont.)

 The structure of the consumer process

do { 

wait(full); 

wait(mutex); 

...

/* remove an item from buffer to next_consumed 

*/ 

... 

signal(mutex); 

signal(empty); 

...

/* consume the item in next consumed */ 

...

} while (true); 
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Readers-Writers Problem

 A data set is shared among a number of concurrent 

processes

 Readers – only read the data set; they do not perform 

any updates

 Writers   – can both read and write

 Problem – allow multiple readers to read at the same time

 Only one single writer can access the shared data at the 

same time

 Several variations of how readers and writers are treated –

all involve priorities
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Readers-Writers Problem

 Shared Data

 Data set

 Semaphore rw_mutex initialized to 1

 Semaphore mutex initialized to 1

 Integer read_count initialized to 0
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Readers-Writers Problem (Cont.)

 The structure of a writer process

do {

wait(rw mutex); 

...

/* writing is performed */ 

... 

signal(rw mutex); 

} while (true);
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OS solutions

Readers-Writers Problem (Cont.)
 The structure of a reader process

do {            // at any moment, 

// at most one reader in entry or exit section. 

wait (mutex) ;  // begin of entry section

readcount ++ ;

if (readcount == 1)  

wait (wrt) ;

signal (mutex) // end of entry section

// critical section, reading is performed

wait (mutex) ; // begin of exit section

readcount - - ;

if (readcount == 0)  

signal (wrt) ;

signal (mutex) ; // end of exit section

// remainder section. 

} while (TRUE);
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Readers-Writers Problem Variations

 First variation – no reader kept waiting unless writer has 

permission to use shared object

 Second variation – once writer is ready, it performs write asap

 Both may have starvation leading to even more variations

 Problem is solved on some systems by kernel providing reader-

writer locks
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Dining-Philosophers Problem

 Philosophers spend their lives thinking 

and eating

 Don’t interact with their neighbors, 

occasionally try to pick up 2 

chopsticks (one at a time) to eat from 

bowl

 Need both to eat, then release 

both when done

 In the case of 5 philosophers

 Shared data 

Bowl of rice (data set)

Semaphore chopstick [5]

initialized to 1
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OS solutions

Dining-Philosophers Problem

 Shared resources

 Processes

P2 P3

P6

P11`

P7

P9

P5

P1

P8

P4

P10

R2

R1

R4

R9

R7

R6

R8

R5

R10

R3
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Dining-Philosophers Problem Algorithm

 The structure of Philosopher i:

do  { 

wait ( chopstick[i] );

wait ( chopStick[ (i + 1) % 5] );

//  eat

signal ( chopstick[i] );

signal (chopstick[ (i + 1) % 5] );

//  think

} while (TRUE);

 What is the problem with this algorithm?
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Problems with Semaphores

 Incorrect use of semaphore operations:

 signal (mutex)  ….  wait (mutex)

 wait (mutex)  …  wait (mutex)

 Omitting  of wait (mutex) or signal (mutex) (or 

both)

 Deadlock and starvation
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Programming Language (OO) Solutions

Monitors
 A high-level abstraction that provides a convenient and 

effective mechanism for process synchronization

 Abstract data type, internal variables only accessible by code 
within the procedure

 Only one process may be active within the monitor at a time

 But not powerful enough to model some synchronization 
schemes

monitor monitor-name {

// shared variable declarations

procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }

}

}
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Schematic view of a Monitor
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Condition Variables

 condition x, y;

 Two operations on a condition variable:

 x.wait () – a process that invokes the operation is 

suspended until x.signal () 

 x.signal () – resumes one of processes (if any) that

invoked x.wait ()

If no x.wait () on the variable, then it has no effect on 

the variable
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Monitor with Condition Variables
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Condition Variables Choices

 If process P invokes x.signal (), with Q in x.wait () state, what should 

happen next?

 If Q is resumed, then P must wait

 Options include

 Signal and wait – P waits until Q leaves monitor or waits for 

another condition

 Signal and continue – Q waits until P leaves the monitor or waits 

for another condition

 Both have pros and cons – language implementer can decide

 Monitors implemented in Concurrent Pascal compromise

P executing signal immediately leaves the monitor, Q is resumed

 Implemented in other languages including Mesa, C#, Java
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Programming Language (OO) 

Solutions

Monitors
Guarantee of no simultaneus execution within a 

monitor

 Some implementation issues

 Signal on conditional variables

 signal and wait

 P invokes signal and either 

 wait until Q leaves or 

 P wait for another condition

 signal and continue

 Q waits until P leaves or P waits for another 

condition. 
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Programming Language (OO) 

Solutions

Monitors
Guarantee of no simultaneus execution 

within a monitor

 Some implementation issues (continued)

 Resumption order ? 

 FCFS 

 Given priority at suspension time 

 x.wait(c), c is a priority
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Programming Language (OO) Solutions

Monitors
monitor DiningPhilosophers

{ 

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) { 

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self [i].wait;

}

void putdown (int i) { 

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}
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Programming Language (OO) Solutions

Monitors (Cont.)

void test (int i) { 

if ( (state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING) ) { 

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() { 

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}
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 Each philosopher i invokes the operations pickup() and 
putdown() in the following sequence:

DiningPhilosophers.pickup (i);

EAT

DiningPhilosophers.putdown (i);

 No deadlock, but starvation is possible

Programming Language (OO) Solutions

Monitors (Cont.)
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Programming Language (OO) Solutions

Monitor Implementation Using Semaphores
 Variables 

semaphore mutex;  // (initially  = 1)
semaphore next;     // (initially  = 0)
int next_count = 0;

 Each procedure F will be replaced by
wait(mutex);

…
// body of F;
…

if (next_count > 0)
signal(next)

else 
signal(mutex);

 Mutual exclusion within a monitor is ensured
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Programming Language (OO) Solutions

Monitor Implementation – Condition Variables
 For each condition variable x, we  have:

semaphore x_sem; // (initially  = 0)

int x_count = 0;

 The operation x.wait can be implemented as:

x-count++;

if (next_count > 0)

signal(next);

else

signal(mutex);

wait(x_sem);

x-count--;
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Programming Language (OO) Solutions

Monitor Implementation (Cont.)

 The operation x.signal can be implemented as:

if (x-count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}
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Programming Language (OO) Solutions

Resuming Processes within a Monitor
 If several processes queued on condition x, and x.signal() 

executed, which should be resumed?

 FCFS frequently not adequate 

 conditional-wait construct of the form x.wait(c)

 Where c is priority number

 Process with lowest number (highest priority) is scheduled 

next
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Programming Language (OO) Solutions

A Monitor to Allocate Single Resource

monitor ResourceAllocator

{ 

boolean busy; 

condition x; 

void acquire(int time) { 

if (busy) 

x.wait(time); 

busy = TRUE; 

} 

void release() { 

busy = FALSE; 

x.signal(); 

} 

initialization code() {

busy = FALSE; 

}

}
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Programming Language (OO) Solutions

Monitors
 Drawbacks - Access order violations

 access without gaining permission

 never release after permission

 releases without gaining permission

 double requests
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Synchronization Examples

 Solaris

 Windows XP

 Linux

 Pthreads
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Solaris Synchronization

 Implements a variety of locks to support multitasking, 

multithreading (including real-time threads), and 

multiprocessing

 Uses adaptive mutexes for efficiency when protecting data 

from short code segments

 Starts as a standard semaphore spin-lock

 If lock held, and by a thread running on another CPU, 

spins

 If lock held by non-run-state thread, block and sleep 

waiting for signal of lock being released
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Solaris Synchronization

 Uses condition variables

 Uses readers-writers locks when longer sections of code 

need access to data

 Uses turnstiles to order the list of threads waiting to 

acquire either an adaptive mutex or reader-writer lock

 Turnstiles are per-lock-holding-thread, not per-object

 Priority-inheritance per-turnstile gives the running thread 

the highest of the priorities of the threads in its turnstile
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Windows XP Synchronization

 Uses interrupt masks to protect access to global resources 

on uniprocessor systems

 Uses spinlocks on multiprocessor systems

 Spinlocking-thread will never be preempted

 Also provides dispatcher objects user-land which may act 

mutexes, semaphores, events, and timers

 Events

An event acts much like a condition variable

 Timers notify one or more thread when time expired

 Dispatcher objects either signaled-state (object 

available) or non-signaled state (thread will block)
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Linux Synchronization

 Linux:

 Prior to kernel Version 2.6, disables interrupts to 

implement short critical sections

 Version 2.6 and later, fully preemptive

 Linux provides:

 semaphores

 spinlocks

 reader-writer versions of both

 On single-cpu system, spinlocks replaced by enabling and 

disabling kernel preemption
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Pthreads Synchronization

 Pthreads API is OS-independent

 It provides:

 mutex locks

 condition variables

 Non-portable extensions include:

 read-write locks

 spinlocks
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4-74

Network & telecommunication 

solutions

Protocols
 CSMA/CD (Carrier Sense, Multiple Access with 

Collision Detection)

 For wired communication. 

 Used in Ethernet

 Silent bus provides right to introduce new 

message

 Retry after collision detection. 

 CSMA/CA (Carrier Sense, Multiple Access with 

Collision Avoidance)
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Network solutions
Ethernet bus arbitration algorithm (IEEE 802.3)

 Optimistic – why pessimistic ? 

 Use it and withdraw if bad things happen. 

 Collision detection  bad things 

Bus

2.5km

51.2s
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Network solutions
Ethernet bus arbitration algorithm IEEE 802.3

Ethernet bus arbitration algorithm

1. If there is some signals in the bus, then stop and try later. 

2. Start sending the message and monitoring the bus. 

3. If in 52s the message is corrupted, then stop and try 

later. 

4. At the 808’th s, complete the message. 
Bus
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Database Solutions

Atomic Transactions

 System Model

 Log-based Recovery

 Checkpoints

 Concurrent Atomic Transactions
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Database Solutions

System Model
 Assures that operations happen as a single logical unit of 

work, in its entirety, or not at all

 Related to field of database systems

 Challenge is assuring atomicity  despite computer system 

failures
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Database Solutions

System Model
 Transaction - collection of instructions or operations that 

performs single logical function

 Here we are concerned with changes to stable storage 

– disk

 Transaction is series of read and write operations

 Terminated by commit (transaction successful) or 

abort (transaction failed) operation

 Aborted transaction must be rolled back to undo any 

changes it performed
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Database Solutions

Types of Storage Media
 Volatile storage – information stored here does not survive 

system crashes

 Example:  main memory, cache

 Nonvolatile storage – Information usually survives crashes

 Example:  disk and tape

 Stable storage – Information never lost

 Not actually possible, so approximated via replication or 

RAID to devices with independent failure modes

Goal is to assure transaction atomicity where failures cause loss 

of information on volatile storage
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Log-Based Recovery
 Record to stable storage information about all modifications by a 

transaction

 Most common is write-ahead logging

 Log on stable storage, each log record describes single 

transaction write operation, including

Transaction name

Data item name

Old value

New value

 <Ti starts> written to log when transaction Ti starts

 <Ti commits> written when Ti commits

 Log entry must reach stable storage before operation on data occurs
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Log-Based Recovery Algorithm

 Using the log, system can handle any volatile memory errors

 Undo(Ti) restores value of all data updated by Ti

 Redo(Ti) sets values of all data in transaction Ti to new 

values

 Undo(Ti) and redo(Ti) must be idempotent

 Multiple executions must have the same result as one 

execution

 If system fails, restore state of all updated data via log

 If log contains <Ti starts> without <Ti commits>, undo(Ti)

 If log contains <Ti starts> and <Ti commits>, redo(Ti)
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Checkpoints

 Log could become long, and recovery could take long

 Checkpoints shorten log and recovery time.

 Checkpoint scheme:

1. Output all log records currently in volatile storage to stable 

storage

2. Output all modified data from volatile to stable storage

3. Output a log record <checkpoint> to the log on stable 

storage

 Now recovery only includes Ti, such that Ti started executing 

before the most recent checkpoint, and all transactions after Ti

All other transactions already on stable storage
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Failure Recovery 

A Way to Achieve Atomicity 
 Failures of Volatile and Nonvolatile Storages!

 Volatile Storage: Memory and Cache

 Nonvolatile Storage: Disks, Magnetic Tape, etc.

 Stable Storage: Storage which never fail.

 Log-Based Recovery

 Write-Ahead Logging

Log Records

< Ti starts >

< Ti commits >

< Ti aborts >

< Ti, Data-Item-Name, Old-Value, New-Value>
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 Two Basic Recovery Procedures:

 undo(Ti): restore data updated by Ti

 redo(Ti): reset data updated by Ti

 Operations must be idempotent!

 Recover the system when a failure occurs:

 “Redo” committed transactions, and “undo” aborted 
transactions.

Failure Recovery

Time

restart
crash
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Failure Recovery

 Why Checkpointing?

 The needs to scan and rerun all log entries 

to redo committed transactions.

 CheckPoint

 Output all log records, Output DB, and Write 

check point to stable storage!

 Commit: A Force Write Procedure

Time
crashcheckpoint
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Concurrent Transactions

 Must be equivalent to serial execution – serializability

 Could perform all transactions in critical section

 Inefficient, too restrictive

 Concurrency-control algorithms provide serializability
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Serializability

 Consider two data items A and B

 Consider Transactions T0 and T1

 Execute T0, T1 atomically

 Execution sequence called schedule

 Atomically executed transaction order called serial schedule

 For N transactions, there are N! valid serial schedules
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Schedule 1: T0 then T1
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Nonserial Schedule

 Nonserial schedule allows overlapped execute

 Resulting execution not necessarily incorrect

 Consider schedule S, operations Oi, Oj

 Conflict if access same data item, with at least one write

 If Oi, Oj consecutive and operations of different transactions & Oi

and Oj don’t conflict

 Then S’ with swapped order Oj Oi equivalent to S

 If S can become S’ via swapping nonconflicting operations

 S is conflict serializable
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Schedule 2: Concurrent Serializable Schedule
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 Conflict Serializable:

 S is conflict serializable if S can be transformed 

into a serial schedule by swapping nonconflicting 

operations.

T0          T1

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

T0          T1

R(A)

W(A)

R(A)

R(B)

W(A)

W(B)

R(B)

W(B)

Schedule 2: 

Concurrent Serializable Schedule

T0          T1

R(A)

W(A)

R(B)

R(A)

W(A)

W(B)

R(B)

W(B)

T0          T1

R(A)

W(A)

R(B)

R(A)

W(B)

W(A)

R(B)

W(B)
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3. Not serializable 

T0          T1

Read(A)

Write(A)

Read(B)

Write(B)

Read(B)

Write(B)

Read(A)

Write(A)

Two operations Oi & Oj conflict if

1. Access the same object

2. One of them is write

Schedule 3: 

Non-Serializable Schedule
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Locking Protocol

 Ensure serializability by associating lock with each data item

 Follow locking protocol for access control

 Locks

 Shared – Ti has shared-mode lock (S) on item Q, Ti can read 

Q but not write Q

 Exclusive – Ti has exclusive-mode lock (X) on Q, Ti can read 

and write Q

 Require every transaction on item Q acquire appropriate lock

 If lock already held, new request may have to wait

 Similar to readers-writers algorithm
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Locking Protocol

Lock

Request
Locked?

Request 

compatible with the

current lock?

Lock is 

granted
WAIT

Yes

Yes

No

No
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Two-phase Locking Protocol

 Generally ensures conflict serializability

 Each transaction issues lock and unlock requests in two phases

 Growing – obtaining locks

 Shrinking – releasing locks

 Does not prevent deadlock
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Timestamp-based Protocols

 Select order among transactions in advance – timestamp-

ordering

 Transaction Ti associated with timestamp TS(Ti) before Ti starts

 TS(Ti) < TS(Tj) if Ti entered system before Tj

 TS can be generated from system clock or as logical counter 

incremented at each entry of transaction

 Timestamps determine serializability order

 If TS(Ti) < TS(Tj), system must ensure produced schedule 

equivalent to serial schedule where Ti appears before Tj
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Timestamp-based Protocol Implementation

 Data item Q gets two timestamps

 W-timestamp(Q) – largest timestamp of any transaction that 
executed write(Q) successfully

 R-timestamp(Q) – largest timestamp of successful read(Q)

 Updated whenever read(Q) or write(Q) executed

 Timestamp-ordering protocol assures any conflicting read and write
executed in timestamp order

 Suppose Ti executes read(Q)

 If TS(Ti) < W-timestamp(Q), Ti needs to read value of Q that was 
already overwritten

read operation rejected and Ti rolled back

 If TS(Ti) ≥ W-timestamp(Q)

read executed, R-timestamp(Q) set to max(R-timestamp(Q), 
TS(Ti))
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Timestamp-ordering Protocol

 Suppose Ti executes write(Q)

 If TS(Ti) < R-timestamp(Q), value Q produced by Ti was needed 

previously and Ti assumed it would never be produced

Write operation rejected, Ti rolled back

 If TS(Ti) < W-timestamp(Q), Ti attempting to write obsolete value 

of Q

Write operation rejected and Ti rolled back

 Otherwise, write executed

 Any rolled back transaction Ti is assigned new timestamp and 

restarted

 Algorithm ensures conflict serializability and freedom from deadlock
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Timestamp-ordering Protocol

 R(Q) requested by Ti  check TS(Ti) !

 W(Q) requested by Ti  check TS(Ti) !

 Rejected transactions are rolled back and restarted 

with a new time stamp.

Time

W-timestamp(Q)

Rejected     Granted 

Time

R-timestamp(Q)

Rejected     Granted 

Time

W-timestamp(Q)

Rejected     Granted 
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A game of time-stamped protocol

0 1 2 3 4 5 6 7 8 9

T1 RA WA

T2 WB

T3 WA RA

time

Time-Stamp Write Time-Stamp Read

A 6 6

B 1

C

TS1 TS2 TS3

6 1 2
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Schedule Possible Under Timestamp Protocol

 Some conflict-serializable schedules are OK with 2-

phase locking protocol but not with TT protocol. 

 Some conflict-serializable schedules are OK with TT 

protocol but not with 2-phase locking protocol. 



5.103 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Leslie Lamport’s timestamp

A natural event ordering: (1)(2)(3)(4)(5)(6)(7)(8)

Timestamps: 

must observe the 

following ordering 

constraints. 

(1)(7)(8)

(2)(3)5)

(4)(6)

(1)(2)

(3)(4)

(6)(7)

(5)(8)

P1 P2 P3

(1)

(8)

(7)

(3)

(6)

(5)

(4)

(2)

C1 C3C2
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Leslie Lamport’s timestamp

A natural event ordering: (1)(2)(3)(4)(5)(6)(7)(8)

Distributed algorithm 

for maintaining local 

clocks: 

1. local clock readings 

ci transmitted with 

all meesages m.  

2. When pj receives 

(ci,m), let 

cj = max(cj+1,ci+1)

P1 P2 P3

(1)

(8)

(7)

(3)

(6)

(5)

(4)

(2)

C1 C3C2



5.105 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Exercise (1/4)
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Exercise (2/4)
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Exercise (3/4)
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Exercise (4/4)


