Chapter 4: Multithreaded
Programming

Operating System Concepts — 9" Edition Silberschatz, Galvin and Gagne © 2013

~$¥7 Chapter 4: Multithreaded Programming

Mu
Mu

Overview

ticore Programming
tithreading Models

Thread Libraries

Implicit Threading

Threading Issues

Operating System Examples

Operating System Concepts — 9t Edition 4.2

o wall
;:' < ’ -\\f‘.‘)
/ ~.,_/v
/y ‘v(

U oK

29X
Silberschatz, Galvin and Gagne © 2013

B To introduce the notion of a thread—a fundamental unit of
CPU utilization that forms the basis of multithreaded
computer systems

B To discuss the APIs for the Pthreads, Windows, and Java
thread libraries

B To explore several strategies that provide implicit threading

B To examine issues related to multithreaded programming

B To cover operating system support for threads in Windows
and Linux

= .! \f;\ \ 3
A 20%
Operating System Concepts — 9" Edition 4.3 Silberschatz, Galvin and Gagne © 2013

y

(1

/,

(e o) I .

B Most modern applications are multithreaded

B Threads run within application

B Multiple tasks with the application can be implemented by separate
threads

e Update display

e Fetch data

e Spell checking

e Answer a network request
B Process creation is heavy-weight while thread creation is light-weight
B Can simplify code, increase efficiency
m Kernels are generally multithreaded

Silberschatz, Galvin and Gagne © 2013

Operating System Concepts — 9t Edition 4.4

A
7,

: “A,"f{:m-l

“»”7 Multithreaded Server Architecture

{&L. ‘\é:;

(2) create new

(1) request thread to service
the request
client > server > thread
A
—/

(3) resume listening
for additional
client requests

i)) § 5
OQ ‘ -~ W =
= A\N
» =

Operating System Concepts — 9t Edition 4.5 Silberschatz, Galvin and Gagne © 201

S5 Benefits

B Responsiveness — may allow continued execution Iif part of
process Is blocked, especially important for user interfaces

B Resource Sharing — threads share resources of process,
easier than shared memory or message passing

B Economy - cheaper than process creation, thread switching
lower overhead than context switching

B Scalability — process can take advantage of multiprocessor
architectures

p.
‘w; ,

)

PN

Operating System Concepts — 9th Edition 4.6 Silberschatz, Galvin and Gagne © 2013

L7 Benefits

In comparison with Process technology,

B Responsiveness
e Creation and context switching
» 30 times slower In process creation in Solaris 2

» 5 times slower In process context switching In
Solaris 2

B Resource Sharing

B Economy
e Thread — Lightweight process (LWP)

e Process — heavyweight process

B Scalablility Y
R

Silberschatz, Galvin and Gagne © 2013

&

Operating System Concepts — 9t Edition 4.7

y

(1

/,

N Am@w,&
4‘/'

57 Multicore Programming

B Multicore or multiprocessor systems putting pressure on
programmers, challenges include:

e Dividing activities
e Balance
e Data splitting

e Data dependency
e Testing and debugging

B Parallelism implies a system can perform more than one
task simultaneously

B Concurrency supports more than one task making
progress

[y

|

e Single processor / core, scheduler providing concurrencyég;;g;

Operating System Concepts — 9th Edition 4.8 Silberschatz, Galvin and Gagne © 2013

=
1>,

e | |
~ Multicore Programming

B Types of parallelism

e Data parallelism — distributes subsets of the same data
across multiple cores, same operation on each

e Task parallelism — distributing threads across cores,
each thread performing unique operation

B As # of threads grows, so does architectural support for
threading

e CPUs have cores as well as hardware threads

e Consider Oracle SPARC T4 with 8 cores, and 8
hardware threads per core

A_,//‘g

Operating System Concepts — 9t Edition 4.9 Silberschatz, Galvin and Gagne © 2013

=

’ x.m%.k
“r/""A \ /
o)

Concurrency vs. Parallelism

m Concurrent execution on single-core system:

single core

T1|T2|T3|T4|T1|T2|T3|T4|T1|...|

time

>

m Parallelism on a multi-core system:

core 1 T1 T3 T1 T3 T1 .
core 2 To Ty To Ty To .
time
>

Operating System Concepts — 9t Edition 4.10

Silberschatz, Galvin and Gagne © 2013

Single and Multithreaded Processes

code

data

files

registers

stack

thread —— ;

single-threaded process

Operating System Concepts — 9t Edition

4.11

code data files
reqisters ||| registers ||| registers
stack stack stack
e

— thread

multithreaded process

Silberschatz, Galvin and Gagne © 201

{ 4
] "~ s
w Z N W =
r-¢ &
- ¥ N

Amdahl’s Law (FEZRE)

ldentifies performance gains from adding additional cores to an
application that has both serial and parallel components

S Is serial portion
N processing cores

speedup <

l.e. if application is 75% parallel / 25% serial, moving from 1 to 2 cores
results in speedup of 1.6 times

As N approaches infinity, speedup approaches 1/ S
Serial portion of an application has disproportionate effect on
performance gained by adding additional cores

But does the law take into account contemporary multicore systems 2«

Operating System Concepts — 9t Edition 4.12 Silberschatz, Galvin and Gagne © 2013

‘“U?er Threads and Kernel Threads (EXIR)

B User threads - management done by user-level threads library

B Three primary thread libraries:
e POSIX Pthreads
e WIn32 threads
e Java threads
B Kernel threads - Supported by the Kernel
B Examples — virtually all general purpose operating systems, including:
e Windows
e Solaris
e Linux
e Tru64 UNIX
e Mac OS X

/ '_‘”“ D
A 2K

Operating System Concepts — 9t Edition 4.13 Silberschatz, Galvin and Gagne © 2013

)~

7 Multithreading Models

|\

Iz

-
~

B Many-to-One

B One-t0-One

B Many-to-Many

‘]
“(

Operating System Concepts — 9th Edition 4.14 Silberschatz, Galvin and Gagne © 2013

s W
o Many-to-One (F4FEZF)

B Many user-level threads mapped to
single kernel thread

B One thread blocking causes all to block

® Multiple threads may not run in parallel 3 g
on muticore system because only one g ;_ Lser thread
may be in kernel at a time

B Few systems currently use this model
B Examples:

e Solaris Green Threads

e GNU Portable Threads

<«——kernel thread

Operating System Concepts — 9t Edition 4.15 Silberschatz, Galvin and Gagne © 2013

(1

S A
f

Each user-level thread maps to kernel thread

[
B Creating a user-level thread creates a kernel thread
B More concurrency than many-to-one
O

Number of threads per process sometimes restricted due to
overhead

B Examples
e \Windows NT/XPIZOOO <— user thread

® Linux
e Solaris 9 and later
<«——Kkernel thread

Silberschatz, Galvin and Gagne © 2013

Operating System Concepts — 9t Edition 4.16

4

-
~ A
i

ST Many-to-Many Model

m Allows many user level threads
to be mapped to many kernel
threads ; 3

create a sufficient number of
kernel threads

m Allows the operating system to ; g cor thrend

B Solaris prior to version 9

B Windows NT/2000 with the
ThreadFiber package

<«——KkKernel thread

Operating System Concepts — 9th Edition 4.17 Silberschatz, Galvin and Gagne © 2013

==

57 Two-level Model

m Similar to M:M, except that it allows a user thread to be
bound to kernel thread
é ; ; é <«—— user thread

B Examples ;
e |RIX
e HP-UX
e Tru64 UNIX
e Solaris 8 and earlier

Operating System Concepts — 9t Edition 4.18 Silberschatz, Galvin and Gagne © 2013

=

g Thread Libraries

B Thread library provides programmer with API for creating
and managing threads

B Two primary ways of implementing
e Library entirely in user space
e Kernel-level library supported by the OS

Operating System Concepts — 9t Edition 4.19 Silberschatz, Galvin and Gagne © 2013

o
/;\»J

. Pthreads

B May be provided either as user-level or kernel-level

B A POSIX standard (IEEE 1003.1c) API for thread creation
and synchronization

B Specification, not implementation

B API specifies behavior of the thread library,
Implementation is up to development of the library

B Common in UNIX operating systems (Solaris, Linux, Mac
OS X)

e ‘\\
J/"Sé\\\
7 R
“l A

e 1)

Operating System Concepts — 9th Edition 4.20 Silberschatz, Galvin and Gagne © 2013

‘?

,n—v m-l

% | Pthreads Example

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* threads call this function */

int main(int argc, char *argvl[])
{
pthread_t tid; /* the thread identifier */
pthread attr_t attr; /* set of thread attributes */

if (argc !'= 2) {
fprintf (stderr,"usage: a.out <integer value>\n");
return -1;

}
if (atoi(argv[1i]) < 0) {

fprintf (stderr,"’d must be >= O\n",atoi(argv[1i]));
return -1;

Operating System Concepts — 9t Edition 4.21 Silberschatz, Galvin and Gagne © 2013

:@
(%

f,

.

w af Pthreads Example (Cont.)

S\

R

/* get the default attributes */

pthread attr_init(&attr);

/* create the thread */

pthread create(&tid,&attr,runner,argv(1i]);
/* wait for the thread to exit */

pthread join(tid,NULL);

printf("sum = ’%d\n",sum);

}

/* The thread will begin control in this function */
void *runner(void *param)

{

int i, upper = atoi(param) ;
sum = 0;

for (i = 1; i <= upper; i++)
sum += 1;

pthread exit (0) ;
}

Figure 4.9 Multithreaded C program using the Pthreads API.

Operating System Concepts — 9t Edition 4.22 Silberschatz, Galvin and Gagne © 2013

-
“$%7 Pthreads Code for Joining 10 Threads

(&_‘\

#define NUM_THREADS 10

/* an array of threads to be joined upon */
pthread t workers[NUM_THREADS] ;

for (int i = 0; i < NUM_THREADS; i++)
pthread_join(workers[i], NULL);

Figure 4.10 Pthread code for joining ten threads.

Operating System Concepts — 9t Edition 4.23 Silberschatz, Galvin and Gagne © 2013

~$¥7Win32 API Multithreaded C Program

#include <windows.h>
#include <stdio.h>
DWORD Sum; /* data is shared by the thread(s) */

/* the thread runs in this separate function */
DWORD WINAPI Summation(LPVOID Param)

{

DWORD Upper = *(DWORD*)Param;

for (DWORD i = 0; i <= Upper; i++)
Sum += i;

return O;

}

int main(int argc, char *argv([])
{

DWORD ThreadId;

HANDLE ThreadHandle;

int Param;

if (argc !'= 2) {
fprintf (stderr,"An integer parameter is required\n");
return -1;

}

Param = atoi(argv([1]);

if (Param < 0) {
fprintf (stderr,"An integer >= 0 is required\n");
return -1;

,.Qf, pA N
Operating System Concepts — 9t Edition 4.24 Silberschatz, Galvin and Gagne © 2013

PN

“#"Win32 API Multithreaded C Program (Cont.)

/* create the thread */
ThreadHandle = CreateThread(
NULL, /* default security attributes */
0, /* default stack size */
Summation, /* thread function */
&Param, /* parameter to thread function */
0, /* default creation flags */
&ThreadId); /* returns the thread identifier */

if (ThreadHandle !'= NULL) {
/* now wait for the thread to finish */
WaitForSingleObject (ThreadHandle, INFINITE) ;

/* close the thread handle */
CloseHandle (ThreadHandle) ;

printf("sum = %d\n",Sum) ;

f
w 7z L =
=< N\
L

Operating System Concepts — 9t Edition 4.25 Silberschatz, Galvin and Gagne © 201

{ cad
G Java Threads

m Java threads are managed by the JVM
m Typically implemented using the threads model provided by underlying OS

m Javathreads may be created by:

e Extending Thread class
e Implementing the Runnable interface

public interface Runnable

{
}

public abstract void run() ;

Operating System Concepts — 9t Edition 4.26 Silberschatz, Galvin and Gagne © 2013

7 Java Multithreaded Program

\L' \\\5

class Sum

{

private int sum;

public int getSum() {
return sum;

}

public void setSum(int sum) {
this.sum = sum;

}
}

class Summation implements Runnable
private int upper;
private Sum sumValue;

public Summation (int upper, Sum sumValue) {
this.upper = upper;
this.sumValue = sumValue;

}

public void run() {
int sum = 0
for (int i
sum += 1i;
sumValue.setSum(sum) ;

}

Il =~

0; 1 <= upper; i++)

}

Operating System Concepts — 9th Edition 4.27 Silberschatz, Galvin and Gagne © 2013

M““""‘“‘k% -
~#¥7 Java Multithreaded Program (Cont.)

public class Driver

{

public static void main(String[] args) {
if (args.length > 0) {
if (Integer.parselInt (args[0]) < 0)
System.err.println(args[0] + " must be >= 0.");
else {
Sum sumObject = new Sum() ;
int upper = Integer.parselnt (args|[0]) ;
Thread thrd new Thread (new Summation (upper, sumObject)) ;
thrd.start (
try {
thrd.join() ;
System.out.println
("The sum of "+upper+" is "+sumObject.getSum()) ;
} catch (InterruptedException ie) { }

}
}

else
System.err.println("Usage: Summation <integer value>"); }

) ;

Operating System Concepts — 9t Edition 4.28 Silberschatz, Galvin and Gagne © 2013

r .o Implicit Threading

B Growing In popularity as numbers of threads increase,
program correctness more difficult with explicit threads

B Creation and management of threads done by compilers
and run-time libraries rather than programmers

B Three methods explored
e Thread Pools
e OpenMP
e Grand Central Dispatch

® Other methods include Microsoft Threading Building Blocks
(TBB), java.util.concurrent package

N 3
~ R \ \ A y
S e ‘,‘\1
J /-‘%;})
y , = ,-V;
Sl P

B
D,

\4

.

Operating System Concepts — 9th Edition 4.29 Silberschatz, Galvin and Gagne © 2013

PN

) N
&w Thread Pools

B Create a number of threads in a pool where they await
work

B Advantages:

e Usually slightly faster to service a request with an
existing thread than create a new threac

e Allows the number of threads in the application(s) to be
bound to the size of the pool

e Separating task to be performed from mechanics of

DWORD WINAPI PoolFunction (AVOID Param) { Sk
/*
* this function runs as a separate thread.
*/

}

® Windows API supports thread pools:

e A)
7 R
& PN 4

Operating System Concepts — 9th Edition 4.30 Silberschatz, Galvin and Gagne © 2013

-

]
&/“.“’“‘ﬁ y \ y
<557 OpenMP

B Set of compiler directives and an API

for C, C++, FORTRAN #include <omp.h>

_ #include <stdio.h>
® Provides support for parallel

programming in shared-memory int main(int argc, char *argv[])

environments {

. _ /* sequential code */
®m |dentifies parallel regions — blocks of

code that can run in parallel #pragma omp parallel
#pragma omp parallel {

printf ("I am a parallel region.");

}

Create as many threads as there are cores .
/* sequential code */

#pragma omp parallel for
for (1i=0;1<N;i++) { return 0;

c[1i] = a[1i] + b[1]~

Run for loop in parallel
Operating System Concepts — 9th Edition 4.31 Silberschatz, Galvin and Gagne © 2013

Grand Central Dispatch

Bloc

Bloc

Apple technology for Mac OS X and 10S operating systems
Extensions to C, C++ languages, API, and run-time library
Allows identification of parallel sections

Manages most of the details of threading

isin“MY - ~{ printf("I am a block"); }

KS placed In dispatch queue

e Assigned to available thread in thread pool when
removed from queue

e ‘\\
S 2
7 R
“l A

e)

Operating System Concepts — 9t Edition 4.32 Silberschatz, Galvin and Gagne © 2013

w o Grand Central Dispatch

B Two types of dispatch queues:

e serial — blocks removed in FIFO order, queue Is per
process, called main queue

» Programmers can create additional serial queues
within program

e concurrent — removed in FIFO order but several may be
removed at a time

» Three system wide gueues with priorities low, default,
high

dispatch queue t queue = dispatch get _global_gqueue
(DISPATCH QUEUE_PRIORITY DEFAULT, O0);

dispatch.async (queue, "“{ printf ("I am a block."); });

Operating System Concepts — 9t Edition 4.33 Silberschatz, Galvin and Gagne © 2013

Threading Issues

B Semantics of fork() and exec() system calls
m Signal handling
e Synchronous and asynchronous
B Thread cancellation of target thread
e Asynchronous or deferred
B Thread-local storage
B Scheduler Activations

Operating System Concepts — 9th Edition 4.34 Silberschatz, Galvin and Gagne © 2013

=

-

e

] Semantics of fork() and exec()

B Does fork () duplicate only the calling thread or all threads?

e Some UNIXes have two versions of fork

B Exec () usually works as normal — replace the running process
iIncluding all threads

Operating System Concepts — 9t Edition 4.35 Silberschatz, Galvin and Gagne © 2013

red Signal Handling

B Signals are used in UNIX systems to notify a process that
a particular event has occurred.

B A signal handler is used to process signals
1. Signal is generated by particular event

2. Signal Is delivered to a process

3. Signal is handled by one of two signal handlers:
1. default
2. user-defined

Operating System Concepts — 9th Edition 4.36 Silberschatz, Galvin and Gagne © 2013

A‘\
f}‘ij

s ,_mhn,&
_ i’ y

B Every signal has default handler that kernel runs when
handling signal

e User-defined signal handler can override default

e For single-threaded, signal delivered to process
B Where should a signal be delivered for multi-threaded?

e Deliver the signal to the thread to which the signal
applies

e Deliver the signal to every thread in the process

e Deliver the signal to certain threads in the process

e Assign a specific thread to receive all signals for the .

Operating System Concepts — 9th Edition 4.37 Silberschatz, Galvin and Gagne © 2013

y

/

/,

| ool '
““w" Thread Cancellation

B Terminating a thread before it has finished

B Thread to be canceled Is target threac
B Two general approaches:

e Asynchronous cancellation terminates the target
thread immediately

e Deferred cancellation allows the target thread to
periodically check if it should be cancelled

B Pthread code to create and cancel a thread:

pthread t tid;

/* create the thread «=/
pthread create (&t id, 0, workexr, NULL) ;

/S * cancel the thread =/
pthread_cancel (£tid) ;

Operating System Concepts — 9t Edition 4.38 Silberschatz, Galvin and Gagne © 2013

=

*:(

. ,_mn,&

& Thread Cancellation (Cont.)

B Invoking thread

cancellation requests cancellation, but actual

cancellation depends on thread state

Mode State Type
Off Disabled —
Deferred Enabled Deferred
Asynchronous Enabled Asynchronous
m If thread has cancellation disabled, cancellation remains pending

until thread ena

nles It

m Default type is deferred

e Cancellation
point

only occurs when thread reaches cancellation

» |.e. pthread testcancel ()

» Then cleanup handler is invoked

B On Linux systems, thread cancellation is handled through si

Operating System Concepts — 9t Edition

4.39 Silberschatz, Galvin and Gagne © 2013

S5 Thread-Local Storage

B Thread-local storage (TLS) allows each thread to have Its
own copy of data

® Useful when you do not have control over the thread
creation process (i.e., when using a thread pool)

m Different from local variables

e Local variables visible only during single function
Invocation

e TLS visible across function invocations
B Similar to static data

e TLS iIs unique to each thread

"y R (,') \ §
- < o AL
. 4 \i\ R
\M—/ < s \\‘,\/
Y e
f w <
74 29K

Operating System Concepts — 9th Edition 4.40 Silberschatz, Galvin and Gagne © 2013

<
=

{
- m"ﬁn,&

4/‘f‘

S5 Scheduler Activations

B Both M:M and Two-level models require communication
to maintain the appropriate number of kernel threads
allocated to the application

B Typically use an intermediate data structure between
user and kernel threads — lightweight process (LWP)

3 +— el thread
e Appears to be a virtual processor on which process

can schedule user thread to run

e Each LWP attached to kernel thread LWP | «—— lightwaight process
e How many LWPs to create? e

g L |
| K |*=——kemel thread

B Scheduler activations provide upcalls - a
communication mechanism from the kernel to the upcall
nandler in the thread library

B This communication allows an application to maintain
the correct number kernel threads

\)

e \\

- =X 1

= J ﬂn‘?’\ x‘\ J
¥ }‘7‘(

A AR

Operating System Concepts — 9th Edition 4.41 Silberschatz, Galvin and Gagne © 2013

Operating System Examples

B Windows XP Threads

B Linux Thread

A

Operating System Concepts — 9th Edition 4.42 Silberschatz, Galvin and Gagne © 2013

S5 Windows Threads

B Windows implements the Windows API — primary API for
Win 98, Win NT, Win 2000, Win XP, and Win 7

B Implements the one-to-one mapping, kernel-level
B Each thread contains

e Athreadid

e Register set representing state of processor

e Separate user and kernel stacks for when thread runs in
user mode or kernel mode

e Private data storage area used by run-time libraries and
dynamic link libraries (DLLS)

N\ X
~ R \ \ A y
S e ‘,‘\1
J /-‘%;})
y , = ,-V;
&l LAY

*«!
D,

¥

-

Operating System Concepts — 9th Edition 4.43 Silberschatz, Galvin and Gagne © 2013

- Windows Threads

B The reqister set, stacks, and private storage area are
known as the context of the thread

B The primary data structures of a thread include:

e ETHREAD (executive thread block) — includes pointer to
process to which thread belongs and to KTHREAD, In
kernel space

e KTHREAD (kernel thread block) — scheduling and
synchronization info, kernel-mode stack, pointer to TEB,

In kernel space

e TEB (thread environment block) — thread id, user-mode
stack, thread-local storage, in user space

g ‘ \ ‘;,‘ “”“\\
S /‘%iﬂ M
y , . ”‘“
A1 w: 2

LADN

Operating System Concepts — 9th Edition 4.44 Silberschatz, Galvin and Gagne © 2013

N
“.‘{“"‘l

’;"j,)'f' Windows XP Threads Data Structures

| O
ETHREAD
thread start
address
pointer to
parent process KTHREAD
scheduling
> and
synchronization
. information
kernel TEB
stack
thread identifier
. user
. stack
thread-local
storage
kernel space user space
Operating System Concepts — 9t Edition 4.45

y o
Silberschatz, Galvin and Gagne © 2013

57 Linux Threads

B Linux refers to them as tasks rather than threads
B Thread creation is done through clone () system call

B clone () allows a child task to share the address space
of the parent task (process)

e Flags control behavior

flag meaning
CLONE_FS File-system information is shared.
CLONE VM The same memory space is shared.
CLONE SIGHAND Signal handlers are shared.
CLONE FILES The set of open files is shared.

B struct task struct points to process data structures
(shared or unique)

Operating System Concepts — 9th Edition 4.46 Silberschatz, Galvin and Gagne © 2013

Exercise (1/2)

o
Operating System Concepts — 9t Edition _ Silberschatz, Galvin and Gagne © 2013

Exercise (2/2)
N

Operating System Concepts — 9" Edition . Ilberschatz, Galvin and Gagne © 2013

