
Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Chapter 3: Process Concept

3.2 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Chapter 3: Process Concept

 Process Concept

 Process Scheduling

 Operations on Processes

 Interprocess Communication

 Examples of IPC Systems

 Communication in Client-Server Systems

3.3 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Objectives

 To introduce the notion of a process -- a program in execution, which forms the basis of all

computation

 To describe the various features of processes, including scheduling, creation and termination,

and communication

 To explore interprocess communication using shared memory and mes- sage passing

 To describe communication in client-server systems

3.4 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Process Concept

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably

 Process – a program in execution; process execution must progress in sequential fashion

 Multiple parts

 The program code, also called text section

 Current activity including program counter, processor registers

 Stack containing temporary data

 Function parameters, return addresses, local variables

 Data section containing global variables

 Heap containing memory dynamically allocated during run time

 Program is passive entity stored on disk (executable file), process is active

 Program becomes process when executable file loaded into memory

 Execution of program started via GUI mouse clicks, command line entry of its name, etc

 One program can be several processes

 Consider multiple users executing the same program

3.5 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Process in Memory

3.6 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Process State

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

3.7 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Diagram of Process State

3.8 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Process Control Block (PCB)

Information associated with each process

(also called task control block)

 Process state – running, waiting, etc

 Program counter – location of instruction to next execute

 CPU registers – contents of all process-centric registers

 CPU scheduling information- priorities, scheduling queue

pointers

 Memory-management information – memory allocated to

the process

 Accounting information – CPU used, clock time elapsed

since start, time limits

 I/O status information – I/O devices allocated to process, list

of open files

3.9 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

CPU Switch From Process to Process

3.10 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Threads

 So far, process has a single thread of execution

 Consider having multiple program counters per process

 Multiple locations can execute at once

 Multiple threads of control -> threads

 Must then have storage for thread details, multiple program counters in PCB

 See next chapter

3.11 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Process Representation in Linux

 Represented by the C structure task_struct

pid t pid; /* process identifier */

long state; /* state of the process */

unsigned int time slice /* scheduling information */

struct task struct *parent; /* this process’s parent */
struct list head children; /* this process’s children */
struct files struct *files; /* list of open files */

struct mm struct *mm; /* address space of this process */

3.12 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Process Scheduling

 Maximize CPU use, quickly switch processes onto CPU for time sharing

 Process scheduler selects among available processes for next execution on CPU

 Maintains scheduling queues of processes

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main memory, ready and waiting to

execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues

3.13 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Ready Queue And Various

I/O Device Queues

3.14 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Representation of Process Scheduling

 Queuing diagram represents queues, resources, flows

3.15 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Schedulers

 Long-term scheduler (or job scheduler) – selects which processes should be brought into the

ready queue

 Short-term scheduler (or CPU scheduler) – selects which process should be executed next and

allocates CPU

 Sometimes the only scheduler in a system

 Short-term scheduler is invoked very frequently (milliseconds)  (must be fast)

 Long-term scheduler is invoked very infrequently (seconds, minutes)  (may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than computations, many short CPU

bursts

 CPU-bound process – spends more time doing computations; few very long CPU bursts

 Long-term scheduler strives for good process mix

3.16 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Addition of Medium Term Scheduling

 Medium-term scheduler can be added if degree of multiple programming needs to decrease

 Remove process from memory, store on disk, bring back in from disk to continue execution:

swapping

3.17 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Schedulers (Cont)

 Short-term scheduler is invoked very frequently

(milliseconds)  (must be fast)

 Long-term scheduler is invoked very infrequently

(seconds, minutes)  (may be slow)

 The long-term scheduler controls the degree of

multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O

than computations, many short CPU bursts

 CPU-bound process – spends more time doing

computations; few very long CPU bursts

3.18 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Multitasking in Mobile Systems

 Some systems / early systems allow only one process to run,

others suspended

 Due to screen real estate, user interface limits iOS provides for a

 Single foreground process- controlled via user interface

 Multiple background processes– in memory, running, but not

on the display, and with limits

 Limits include single, short task, receiving notification of

events, specific long-running tasks like audio playback

 Android runs foreground and background, with fewer limits

 Background process uses a service to perform tasks

 Service can keep running even if background process is

suspended

 Service has no user interface, small memory use

3.19 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Context Switch

 When CPU switches to another process, the system must save

the state of the old process and load the saved state for the new

process via a context switch

 Context of a process represented in the PCB

 Context-switch time is overhead; the system does no useful work

while switching

 The more complex the OS and the PCB -> longer the context

switch

 Time dependent on hardware support

 Some hardware provides multiple sets of registers per CPU ->

multiple contexts loaded at once

3.20 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

2014/10/14 stopped here.

3.21 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Operations on Processes

 System must provide mechanisms for process creation,

termination, and so on as detailed next

3.22 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Process Creation（黃建文）

 Parent process create children processes, which, in turn create

other processes, forming a tree of processes

 Generally, process identified and managed via a process

identifier (pid)

 Resource sharing options

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution options

 Parent and children execute concurrently

 Parent waits until children terminate

3.23 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

A Tree of Processes in Linux（王韓彬）

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

3.24 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Process Creation (Cont.)（劉秋志）

 Address space

 Child duplicate of parent

 Child has a program loaded into it

 UNIX examples

 fork() system call creates new process

 exec() system call used after a fork() to replace the process’

memory space with a new program

3.25 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

C Program Forking Separate Process

3.26 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Creating a Separate Process via Windows API

3.27 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Process Termination

 Process executes last statement and asks the operating system to delete it (exit())

 Output data from child to parent (via wait())

 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort())

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting

 Some operating systems do not allow child to continue if its parent terminates

– All children terminated - cascading termination

 Wait for termination, returning the pid:

pid t pid; int status;

pid = wait(&status);

 If no parent waiting, then terminated process is a zombie

 If parent terminated, processes are orphans

3.28 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Multiprocess Architecture – Chrome Browser

 Many web browsers ran as single process (some still do)

 If one web site causes trouble, entire browser can hang or crash

 Google Chrome Browser is multiprocess with 3 categories

 Browser process manages user interface, disk and network I/O

 Renderer process renders web pages, deals with HTML, Javascript, new one for each website

opened

 Runs in sandbox restricting disk and network I/O, minimizing effect of security exploits

 Plug-in process for each type of plug-in

3.29 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Interprocess Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes, including sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication (IPC)

 Two models of IPC

 Shared memory

 Message passing

3.30 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Communications Models

3.31 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Producer-Consumer Problem

 Paradigm for cooperating processes, producer

process produces information that is consumed by

a consumer process

 unbounded-buffer places no practical limit on

the size of the buffer

 bounded-buffer assumes that there is a fixed

buffer size

3.32 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Bounded-Buffer – Shared-Memory Solution

 Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

 Solution is correct, but can only use BUFFER_SIZE-1

elements

3.33 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Bounded-Buffer – Producer

item next produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER SIZE) == out)

; /* do nothing */

buffer[in] = next produced;

in = (in + 1) % BUFFER SIZE;

}

3.34 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Bounded Buffer – Consumer

item next consumed;

while (true) {

while (in == out)

; /* do nothing */

next consumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

/* consume the item in next consumed */

}

3.35 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Interprocess Communication – Message Passing

 Mechanism for processes to communicate and to synchronize their
actions

 Message system – processes communicate with each other without
resorting to shared variables

 IPC facility provides two operations:

 send(message) – message size fixed or variable

 receive(message)

 If P and Q wish to communicate, they need to:

 establish a communication link between them

 exchange messages via send/receive

 Implementation of communication link

 physical (e.g., shared memory, hardware bus)

 logical (e.g., direct or indirect, synchronous or asynchronous,
automatic or explicit buffering)

3.36 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Implementation Questions

 How are links established?

 Can a link be associated with more than two processes?

 How many links can there be between every pair of

communicating processes?

 What is the capacity of a link?

 Is the size of a message that the link can accommodate

fixed or variable?

 Is a link unidirectional or bi-directional?

3.37 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Direct Communication

 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from

process Q

 Properties of communication link

 Links are established automatically

 A link is associated with exactly one pair of

communicating processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-

directional

3.38 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Indirect Communication

 Messages are directed and received from mailboxes (also

referred to as ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Properties of communication link

 Link established only if processes share a common

mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication

links

 Link may be unidirectional or bi-directional

3.39 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Indirect Communication

 Operations

 create a new mailbox

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox A

3.40 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Indirect Communication

 Mailbox sharing

 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two processes

 Allow only one process at a time to execute a receive

operation

 Allow the system to select arbitrarily the receiver.

Sender is notified who the receiver was.

3.41 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Synchronization

 Message passing may be either blocking or non-blocking

 Blocking is considered synchronous

 Blocking send has the sender block until the

message is received

 Blocking receive has the receiver block until a

message is available

 Non-blocking is considered asynchronous

 Non-blocking send has the sender send the

message and continue

 Non-blocking receive has the receiver receive a valid

message or null

}

3.42 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Synchronization (Cont.)

 Different combinations possible

 If both send and receive are blocking, we have a rendezvous

 Producer-consumer becomes trivial

message next produced;

while (true) {

/* produce an item in next produced */

send(next produced);

}

message next consumed;

while (true) {

receive(next consumed);

/* consume the item in next consumed */

}

3.43 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Buffering

 Queue of messages attached to the link; implemented in one of

three ways

1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages

Sender must wait if link full

3. Unbounded capacity – infinite length

Sender never waits

3.44 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Examples of IPC Systems - POSIX

 POSIX Shared Memory

 Process first creates shared memory segment
shm_fd = shm_open(name, O CREAT | O RDRW,

0666);

 Also used to open an existing segment to share it

 Set the size of the object

ftruncate(shm fd, 4096);

 Now the process could write to the shared memory

sprintf(shared memory, "Writing to shared

memory");

3.45 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

IPC POSIX Producer

3.46 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

IPC POSIX Consumer

3.47 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Examples of IPC Systems - Mach

 Mach communication is message based

 Even system calls are messages

 Each task gets two mailboxes at creation- Kernel and Notify

 Only three system calls needed for message transfer

msg_send(), msg_receive(), msg_rpc()

 Mailboxes needed for commuication, created via

port_allocate()

 Send and receive are flexible, for example four options if mailbox full:

 Wait indefinitely

 Wait at most n milliseconds

 Return immediately

 Temporarily cache a message

3.48 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Examples of IPC Systems – Windows

 Message-passing centric via advanced local procedure call (LPC) facility

 Only works between processes on the same system

 Uses ports (like mailboxes) to establish and maintain communication channels

 Communication works as follows:

 The client opens a handle to the subsystem’s connection port object.

 The client sends a connection request.

 The server creates two private communication ports and returns the handle to one of them

to the client.

 The client and server use the corresponding port handle to send messages or callbacks and

to listen for replies.

3.49 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Local Procedure Calls in Windows XP

3.50 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Communications in Client-Server Systems

 Sockets

 Remote Procedure Calls

 Pipes

 Remote Method Invocation (Java)

3.51 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Sockets

 A socket is defined as an endpoint for communication

 Concatenation of IP address and port – a number included at start of message packet to

differentiate network services on a host

 The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

 Communication consists between a pair of sockets

 All ports below 1024 are well known, used for standard services

 Special IP address 127.0.0.1 (loopback) to refer to system on which process is running

3.52 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Socket Communication

3.53 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Sockets in Java

 Three types of sockets

 Connection-oriented (TCP)

 Connectionless (UDP)

 MulticastSocket class– data can

be sent to multiple recipients

 Consider this “Date” server:

3.54 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Remote Procedure Calls

 Remote procedure call (RPC) abstracts procedure calls between processes on networked systems

 Again uses ports for service differentiation

 Stubs – client-side proxy for the actual procedure on the server

 The client-side stub locates the server and marshalls the parameters

 The server-side stub receives this message, unpacks the marshalled parameters, and performs the

procedure on the server

 On Windows, stub code compile from specification written in Microsoft Interface Definition Language

(MIDL)

 Data representation handled via External Data Representation (XDL) format to account for different

architectures

 Big-endian and little-endian

 Remote communication has more failure scenarios than local

 Messages can be delivered exactly once rather than at most once

 OS typically provides a rendezvous (or matchmaker) service to connect client and server

3.55 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Execution of RPC

3.56 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Remote Method Invocation

 Remote Method Invocation (RMI) is a Java

mechanism similar to RPCs

 RMI allows a Java program on one machine to

invoke a method on a remote object

3.57 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Marshalling Parameters

3.58 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Pipes

 Acts as a conduit allowing two processes to communicate

 Issues

 Is communication unidirectional or bidirectional?

 In the case of two-way communication, is it half or full-duplex?

 Must there exist a relationship (i.e. parent-child) between the communicating processes?

 Can the pipes be used over a network?

3.59 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Ordinary Pipes

 Ordinary Pipes allow communication in standard producer-consumer style

 Producer writes to one end (the write-end of the pipe)

 Consumer reads from the other end (the read-end of the pipe)

 Ordinary pipes are therefore unidirectional

 Require parent-child relationship between communicating processes

 Windows calls these anonymous pipes

 See Unix and Windows code samples in textbook

3.60 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Named Pipes

 Named Pipes are more powerful than ordinary pipes

 Communication is bidirectional

 No parent-child relationship is necessary between the communicating processes

 Several processes can use the named pipe for communication

 Provided on both UNIX and Windows systems

3.61 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Exercise (1/3)

3.62 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Exercise (2/3)

3.63 Silberschatz, Galvin and Gagne © 2013Operating System Concepts – 9th Edition

Exercise (3/3)

