Chapter 3: Process Concept

Operating System Concepts — 9" Edition Silberschatz, Galvin and Gagne 02013

Lt
5 Chapter 3: Process Concept

Process Concept

Process Scheduling
Operations on Processes
Interprocess Communication
Examples of IPC Systems

Communication in Client-Server Systems

A N
Operating System Concepts — 9" Edition 3.2 Silberschatz, Galvin and Gagne © 2013

o Objectives

®m Tointroduce the notion of a process -- a program in execution, which forms the basis of all
computation

m To describe the various features of processes, including scheduling, creation and termination,
and communication

® To explore interprocess communication using shared memory and mes- sage passing

® To describe communication in client-server systems

Operating System Concepts — 9t Edition 3.3 Silberschatz, Galvin and Gagne © 2013

-

® An operating system executes a variety of programs:

e Batch system — jobs

e Time-shared systems — user programs or tasks
B Textbook uses the terms job and process almost interchangeably
B Process — a program in execution; process execution must progress in sequential fashion
m Multiple parts

e The program code, also called text section

e Current activity including program counter, processor registers

e Stack containing temporary data

» Function parameters, return addresses, local variables

e Data section containing global variables

e Heap containing memory dynamically allocated during run time
® Program is passive entity stored on disk (executable file), process is active

e Program becomes process when executable file loaded into memory
m Execution of program started via GUI mouse clicks, command line entry of its name, etc
®m One program can be several processes

e Consider multiple users executing the same program

Operating System Concepts — 9t Edition 3.4 Silberschatz, Galvin and Gagne © 2013

<557 Process in Memory

max
stack

heap

data

text

A X
Operating System Concepts — 9" Edition 3.5 Silberschatz, Galvin and Gagne © 2013

Process State

B As aprocess executes, it changes state

new: The process is being created

running: Instructions are being executed

waiting: The process is waiting for some event to occur
ready: The process is waiting to be assigned to a processor
terminated: The process has finished execution

Operating System Concepts — 9" Edition 3.6

Silberschatz, Galvin and Gagne © 2013

4 ,dfw-‘
i%8

r ol Diagram of Process State

Q&L‘—" \A:)

o admitted interrupt exit

scheduler dispatch

I/O or event completion I/O or event wait

A X
Operating System Concepts — 9" Edition 3.7 Silberschatz, Galvin and Gagne © 2013

-

. ,Amv».k

557 Process Control Block (PCB)

Information associated with each process | prOCG SS State
(also called task control block)
B Process state — running, waiting, etc Process n umber

Program counter — location of instruction to next execute

program counter

O
m CPU registers — contents of all process-centric registers
O

CPU scheduling information- priorities, scheduling queue
pointers

B Memory-management information — memory allocated to reg |Ste I'S
the process

® Accounting information — CPU used, clock time elapsed

since start, time limits memory limits
m |/O status information — I/O devices allocated to process, list) .
of open files list of open files
e o o

Operating System Concepts — 9t Edition 3.8 Silberschatz, Galvin and Gagne © 2013

;@‘

f,

,«:m.l

~$%7 CPU Switch From Process to Process

| S

process P, operating system process P,

interrupt or system call

executing / l

h save state into PCB,

~ idle

reload state from PCB, J

> idle interrupt or system call executing

| T

save state into PCB,

. - idle

) reload state from PCB, p

executing \

Operating System Concepts — 9t Edition 3.9 Silberschatz, Galvin and Gagne © 2013

7 Threads

So far, process has a single thread of execution
Consider having multiple program counters per process
e Multiple locations can execute at once
» Multiple threads of control -> threads
Must then have storage for thread details, multiple program counters in PCB
See next chapter

Operating System Concepts — 9" Edition 3.10

— .
> N VT
/' ’/' W‘\\ N
Al uﬁ‘;‘.

Silberschatz, Galvin and Gagne © 2013

“$%7 Process Representation in Linux

m Represented by the C structure task struct
pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */
struct task struct *parent; /* this process s parent */
struct list head children; /* this process’ s children */
struct files struct *files; /* list of open files */
struct mm struct *mm; /* address space of this process */

Sinuct task =iruct Siruct tass shuct gtnuct task_ struct
Prissess informeation PrisCess infarmation & & & pProGess inlonmaion
- - n
- - ™
- - n

cidrrent

[curmantly exaeculing procoess)

Operating System Concepts — 9" Edition 3.11 Silberschatz, Galvin and Gagne © 2013

:@
(%

f,

] el

-7 Process Scheduling

(\}L‘, ‘\&:;

®m Maximize CPU use, quickly switch processes onto CPU for time sharing
B Process scheduler selects among available processes for next execution on CPU
B Maintains scheduling queues of processes

e Job queue — set of all processes in the system

e Ready queue — set of all processes residing in main memory, ready and waiting to
execute

e Device gueues — set of processes waiting for an I/O device
e Processes migrate among the various queues

A PAN
Operating System Concepts — 9t Edition 3.12 Silberschatz, Galvin and Gagne © 2013

(™ Ready Queue And Various
< '’ /O Device Queues

queue header PCB, PCB,
ready head >
queue tail ~ registers registers
° e
[J L]
: / °
mag head +——m
tape 5 =
unit O tail =
;nag head —+——=
ape
uni$1 =i — PCB, PCB,, PCBg
/ N
disk head “
unit O tail .\
PCBs
terminal head —T—> -
unit O tail 0
A
Operating System Concepts — 9" Edition 3.13 Silberschatz, Galvin and Gagne © 2013

aml : -
‘*aw Representation of Process Scheduling

® Queuing diagram represents queues, resources, flows

_: ready queue @) g

/O /O queue «— |/O request E—
time slice :
expired
child fork a
@ child
iInterrupt wait for an E
occurs interrupt

f >
4 s
OQ ‘ -~ W =
= A\
N N

Operating System Concepts — 9t Edition 3.14 Silberschatz, Galvin and Gagne © 201

%/ Schedulers

t'&" \é =3

m Long-term scheduler (or job scheduler) — selects which processes should be brought into the
ready queue

m Short-term scheduler (or CPU scheduler) — selects which process should be executed next and
allocates CPU

e Sometimes the only scheduler in a system
® Short-term scheduler is invoked very frequently (milliseconds) = (must be fast)

® Long-term scheduler is invoked very infrequently (seconds, minutes) = (may be slow)
®m The long-term scheduler controls the degree of multiprogramming

B Processes can be described as either:

e |/O-bound process — spends more time doing I/O than computations, many short CPU
bursts

e CPU-bound process — spends more time doing computations; few very long CPU bursts
® Long-term scheduler strives for good process mix

Operating System Concepts — 9t Edition 3.15 Silberschatz, Galvin and Gagne © 2013

:@
(%

f,

] el

=»»7 Addition of Medium Term Scheduling

| S

B Medium-term scheduler can be added if degree of multiple programming needs to decrease

e Remove process from memory, store on disk, bring back in from disk to continue execution:
swapping

swap in partially executed swap out
swapped-out processes

YYyy

ready queue CPU) » end

/0 I/O walting
queues

=)
/ w&n
A 0 N

Operating System Concepts — 9t Edition 3.16 Silberschatz, Galvin and Gagne © 2013

55 Schedulers (Cont)

B Short-term scheduler is invoked very frequently
(milliseconds) = (must be fast)

B Long-term scheduler is invoked very infrequently
(seconds, minutes) = (may be slow)

B The long-term scheduler controls the degree of
multiprogramming
B Processes can be described as either:

e |/O-bound process — spends more time doing I/O
than computations, many short CPU bursts

e CPU-bound process — spends more time doing
computations; few very long CPU bursts A

Operating System Concepts — 9t Edition 3.17 Silberschatz, Galvin and Gagne © 2013

=$»7 Multitasking in Mobile Systems

B Some systems / early systems allow only one process to run,
others suspended

B Due to screen real estate, user interface limits 10S provides for a
e Single foreground process- controlled via user interface

e Multiple background processes— in memory, running, but not
on the display, and with limits

e Limits include single, short task, receiving notification of
events, specific long-running tasks like audio playback

B Android runs foreground and background, with fewer limits
e Background process uses a service to perform tasks

e Service can keep running even if background process is
suspended

)

=

e Service has no user interface, small memory use A_//}

Operating System Concepts — 9t Edition 3.18 Silberschatz, Galvin and Gagne © 2013

w—- Context Switch

B When CPU switches to another process, the system must save
the state of the old process and load the saved state for the new
process via a context switch

B Context of a process represented in the PCB

m Context-switch time is overhead; the system does no useful work
while switching

e The more complex the OS and the PCB -> longer the context
switch

B Time dependent on hardware support

e Some hardware provides multiple sets of registers per CPU ->
multiple contexts loaded at once

Operating System Concepts — 9t Edition 3.19 Silberschatz, Galvin and Gagne © 2013

2014/10/14 stopped here.

Operating System Concepts — 9" Edition 3.20 Silberschatz, Galvin and Gagne © 2013

:@
(%

- Operations on Processes

B System must provide mechanisms for process creation,
termination, and so on as detailed next

S =
= NP
7 WS,
U 2%

Operating System Concepts — 9t Edition 3.21 Silberschatz, Galvin and Gagne © 2013

ST Process Creation (ZEE32)

B Parent process create children processes, which, in turn create
other processes, forming a tree of processes

B Generally, process identified and managed via a process
identifier (pid)

B Resource sharing options
e Parent and children share all resources
e Children share subset of parent’ s resources
e Parent and child share no resources
B Execution options
e Parent and children execute concurrently
e Parent waits until children terminate

Operating System Concepts — 9t Edition 3.22 Silberschatz, Galvin and Gagne © 2013

“%%7 A Tree of Processes in Linux (E&#H#)

init
pid = 1

login kthreadd sshd
pid = 8415 pid = 2 pid = 3028
bash pdflush sshd
pid = 8416 pid = 200 pid = 3610
ps emacs _ dtC_SC:BOS
pid = 9298 pid = 9204 pia =

Operating System Concepts — 9t Edition 3.23 Silberschatz, Galvin and Gagne © 2013

=

-

PN

“$%7 Process Creation (Cont.)(BIFkE

B Address space

e Child duplicate of parent
e Child has a program loaded Into it

B UNIX examples
e fork () system call creates new process

e exec () system call used after a fork () to replace the process’
memory space with a new program

parent : resumes
walt S

child>{ exec() »

Operating System Concepts — 9t Edition 3.24 Silberschatz, Galvin and Gagne © 2013

<S5 C Program Forking Separate Process

#include <sys/types.h>
#include <stdio.h>

#include <unistd.h>

int main()

{

pid t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL) ;

}

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf("Child Complete");

}

return 0;

Operating System Concepts — 9" Edition 3.25 Silberschatz, Galvin and Gagne © 2013

= N

.; ..Qﬁf'f'“‘, . - -
“#¥7 Creating a Separate Process via Windows AP

i&‘" \\‘é:;

#include <stdio.h>
#include <windows.h>

int main(VOID)

{

STARTUPINFO =i;
PROCESS_INFORMATION pi;

/* allocate memory */
ZeroMemory (&si, sizeof(si));
si.cb = sizeof(si);
ZeroMemory (&pi, sizeof(pi));

/* create child process */
if (!CreateProcess(NULL, /* use command line */
"C:\\WINDOWS\\system32\\mspaint.exe", /* command */
NULL, /* don’t inherit process handle */
NULL, /* don’t inherit thread handle */
FALSE, /* disable handle inheritance */
0, /* no creation flags */
NULL, /* use parent’s environment block */
NULL, /* use parent’s existing directory */
&s1i,

&pi))

{
fprintf (stderr, "Create Process Failed");
return -1;
¥
/* parent will wait for the child to complete */
WaitForSingleObject(pi.hProcess, INFINITE);
printf ("Child Complete");

/* close handles */
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread) ;

Operating System Concepts — 9" Edition 3.26 Silberschatz, Galvin and Gagne © 2013

=

-

P . .
-7 Process Termination

®. \
- W

® Process executes last statement and asks the operating system to delete it (exit ())
e Output data from child to parent (via wait ())

e Process’ resources are deallocated by operating system

m Parent may terminate execution of children processes (abort ())
e Child has exceeded allocated resources
e Task assigned to child is no longer required
e If parent is exiting
» Some operating systems do not allow child to continue if its parent terminates
All children terminated - cascading termination

m Wait for termination, returning the pid:

pid t pid; int status;

pid = wait(&status);

m If no parent waiting, then terminated process is a zombie
m |If parent terminated, processes are orphans

Operating System Concepts — 9t Edition 3.27 Silberschatz, Galvin and Gagne © 2013

=

p—

gra)*"”’/I\/Iultlprocess Architecture — Chrome Browser

®m Many web browsers ran as single process (some still do)

e If one web site causes trouble, entire browser can hang or crash
m Google Chrome Browser is multiprocess with 3 categories

e Browser process manages user interface, disk and network /O

e Renderer process renders web pages, deals with HTML, Javascript, new one for each website
opened

» Runs in sandbox restricting disk and network I/O, minimizing effect of security exploits
e Plug-in process for each type of plug-in

m
L) &) I@JWIE?"Dperatlng System Coi 0 O3 BBC - Homepage o E The Mew York Times - Breal ! F Google Chrome - The web

€« > C O wwl.-l.rgoc:glec hrcme-‘n:fenfr‘ruT_fdﬁwnlcrad—macI1tm|?brand-¢l{2 / or | N

& & chrome ﬁrm Features / _English 2

Each tab represents a separate process

Operating System Concepts — 9t Edition 3.28 Silberschatz, Galvin and Gagne © 2013

o Interprocess Communication

Processes within a system may be independent or cooperating
Cooperating process can affect or be affected by other processes, including sharing data
Reasons for cooperating processes:

e Information sharing

e Computation speedup

e Modularity

e Convenience
Cooperating processes need interprocess communication (IPC)
Two models of IPC

e Shared memory

e Message passing

Operating System Concepts — 9t Edition 3.29 Silberschatz, Galvin and Gagne © 2013

;lg

f,

o' Communications Models

process A — process A

. orocess B — shared memory |e—

process B —
message queue
—> M| M4 | Mo M3 ... (M <
kernel
kernel
(a) (b)

S “ ".bv‘\\" \\\\
gt
- : ‘i\ﬁz “}X\)
O
o

=N
ol
7 WS
U A

Operating System Concepts — 9t Edition 3.30 Silberschatz, Galvin and Gagne © 2013

=

-

.
P

o Producer-Consumer Problem

m Paradigm for cooperating processes, producer
process produces information that is consumed by
a consumer process

e unbounded-buffer places no practical limit on
the size of the buffer

e bounded-buffer assumes that there Is a fixed
buffer size

Operating System Concepts — 9t Edition 3.31 Silberschatz, Galvin and Gagne © 2013

=

e
‘“%""’ Bounded-Buffer — Shared-Memory Solution

B Shared data
#define BUFFER SIZE 10

typedef struct {

} 1tem;
item buffer [BUFFER_SIZE] ;
int in = 0;

int out = 0;

m Solution is correct, but can only use BUFFER_SIZE-1
elements

(g~
w ‘!_ 7 &=
o\
» &

Operating System Concepts — 9t Edition 3.32 Silberschatz, Galvin and Gagne © 201

;@‘

f,

: “A,"f{:m-l

w o Bounded-Buftfer — Producer

{&L. ‘\é:;

i1tem next produced;
while (true) {
/* produce an item in next produced */
while (((in + 1) % BUFFER SIZE) == out)
; /* do nothing */
buffer[in] = next produced;

in = (1n + 1) % BUFFER SIZE;

i 1 sp) 5t
OQ ‘: ~ W =
2\
» N

Operating System Concepts — 9t Edition 3.33 Silberschatz, Galvin and Gagne © 201

¢

ﬂwﬁ

» | Bounded Buffer — Consumer

1tem next consumed;

while (true) {
while (1n == out)

; /* do nothing */
next consumed = buffer|[out];

out = (out + 1) % BUFFER SIZE;

/* consume the item 1n next consumed */

W AL =
= \\
» &

Operating System Concepts — 9t Edition 3.34 Silberschatz, Galvin and Gagne © 201

T,
‘\“{Q

;/ __ "“Bni
i ‘/\- /
e s

“#”Interprocess Communication — Message Passing

B Mechanism for processes to communicate and to synchronize their
actions

B Message system — processes communicate with each other without
resorting to shared variables

m |PC faclility provides two operations:
e send(message) — message size fixed or variable
® receive(message)

m If P and Q wish to communicate, they need to:
e establish a communication link between them
e exchange messages via send/receive

B |Implementation of communication link
e physical (e.g., shared memory, hardware bus)

e logical (e.g., direct or indirect, synchronous or asynchronous,
automatic or explicit buffering) -

N .
~ SO \ \ X b \\
==
R
el LD

WS

Operating System Concepts — 9t Edition 3.35 Silberschatz, Galvin and Gagne © 2013

y

(1

| oo i '
ot Implementation Questions

/,

®m How are links established?
B Can a link be associated with more than two processes?

® How many links can there be between every pair of
communicating processes?

® What is the capacity of a link?

B s the size of a message that the link can accommodate
fixed or variable?

B Is a link unidirectional or bi-directional?

Operating System Concepts — 9t Edition 3.36 Silberschatz, Galvin and Gagne © 2013

r o Direct Communication

B Processes must name each other explicitly:
e send (P, message) — send a message to process P

e receive(Q, message) — receive a message from
process Q

B Properties of communication link
e Links are established automatically

e Alink is associated with exactly one pair of
communicating processes

e Between each pair there exists exactly one link

e The link may be unidirectional, but is usually bi-
directional =y

Operating System Concepts — 9t Edition 3.37 Silberschatz, Galvin and Gagne © 2013

r.ai Indirect Communication

B Messages are directed and received from mailboxes (also
referred to as ports)

e Each mailbox has a unique id
e Processes can communicate only If they share a mailbox
®m Properties of communication link

e Link established only If processes share a common
mailbox

e A link may be associated with many processes

e Each pair of processes may share several communication
Inks

e Link may be unidirectional or bi-directional

Operating System Concepts — 9t Edition 3.38 Silberschatz, Galvin and Gagne © 2013

- Indirect Communication

B Operations
e create a new mailbox
e send and recelve messages through mailbox
e destroy a mailbox

B Primitives are defined as:
send(A, message) — send a message to mailbox A

receive(A, message) — recelve a message from mailbox A

- 3 v‘ i) “\
a £ '&\ R\
& ~
- /}W\\‘\)
, e N
7 PR
U ‘.‘A‘.\g»‘y P

Operating System Concepts — 9t Edition 3.39 Silberschatz, Galvin and Gagne © 2013

57 Indirect Communication

B Mailbox sharing
e P, P,, and P5 share mailbox A

e P,, sends; P, and P, receive
e Who gets the message”?
B Solutions
e Allow a link to be associated with at most two processes

e Allow only one process at a time to execute a receive
operation

e Allow the system to select arbitrarily the receiver.
Sender Is notified who the receiver was.

Operating System Concepts — 9t Edition 3.40 Silberschatz, Galvin and Gagne © 2013

y

(1

/,

&5 i ' .
& Synchronization

B Message passing may be either blocking or non-blocking
B Blocking is considered synchronous

e Blocking send has the sender block until the
message Is received

e Blocking receive has the receiver block until a
message Is available

B Non-blocking is considered asynchronous

e Non-blocking send has the sender send the
message and continue

e Non-blocking receive has the receiver receive a valid
message or null

J

Operating System Concepts — 9t Edition 3.41 Silberschatz, Galvin and Gagne © 2013

=

-

Aﬂ«:-fw%i// g .
“ET Synchronization (Cont.)

B Different combinations possible
e If both send and receive are blocking, we have a rendezvous
B Producer-consumer becomes trivial

message next produced;

while (true) {
/* produce an item in next produced */

send (next produced) ;

message next consumed;
while (true) {
recelve (next consumed) ;

/* consume the item 1n next consumed */

}

Operating System Concepts — 9t Edition 3.42 Silberschatz, Galvin and Gagne © 2013

557 Buffering

B Queue of messages attached to the link; implemented in one of
three ways

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

Operating System Concepts — 9t Edition 3.43 Silberschatz, Galvin and Gagne © 2013

y

(1

/,

- m}x,&

~»77 Examples of IPC Systems - POSIX

m POSIX Shared Memory

e Process first creates shared memory segment
shm fd = shm open(name, O CREAT | O RDRW,
0666) ;

e Also used to open an existing segment to share it
e Set the size of the object

ftruncate(shm £d, 4096) ;
e Now the process could write to the shared memory

sprintf (shared memory, "Writing to shared
memory") ;

Operating System Concepts — 9t Edition 3.44 Silberschatz, Galvin and Gagne © 2013

L
g IPC POSIX Producer

#include <stdio.h>
#include <stlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE 4096;
/* name of the shared memory object */

const char #*name = "QS";

/* strings written to shared memory */
const char *message 0 = "Hello";

const char *message 1 = "World!";

/* shared memory file descriptor */
int shm fd;
/* pointer to shared memory obect */
void *ptr;

/* create the shared memory object */
shm fd = shm open(name, O_CREAT | O_RDRW, 0666);

/* configure the size of the shared memory object */
ftruncate(shm fd, SIZE);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT_WRITE, MAP_SHARED, shm fd, 0);

/* write to the shared memory object */
sprintf (ptr,"/%s" ,message 0);

ptr += strlen(message 0);

sprintf (ptr,"/%s" ,message 1);

ptr += strlen(message 1);

return 0; S | <
} Peqis 9% A

Operating System Concepts — 9" Edition 3.45 Silberschatz, Galvin and Gagne © 2013

(em)
> & IPC POSIX Consumer

#include <stdio.h>
#include <stlib.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE 4096;

/* name of the shared memory object */

const char *name = "0S";
/* shared memory file descriptor */
int shm fd;

/* pointer to shared memory obect */
vold *ptr;

/* open the shared memory object */
shm fd = shm open(name, O RDONLY, 0666);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT READ, MAP SHARED, shm fd, 0);

/* read from the shared memory object */
printf ("%s", (char *)ptr);

/* remove the shared memory object */
shm unlink(name) ;

return 0;

VD
Operating System Concepts — 9" Edition 3.46 Silberschatz, Galvin and Gagne © 2013

7 Examples of IPC Systems - Mach

®m Mach communication is message based
e Even system calls are messages
e Each task gets two mailboxes at creation- Kernel and Notify
e Only three system calls needed for message transfer
msg_send() , msg receive (), msg rpc()
e Mailboxes needed for commuication, created via
port allocate()
e Send and receive are flexible, for example four options if mailbox full:
» Walit indefinitely
» Wait at most n milliseconds
» Return immediately
» Temporarily cache a message

Operating System Concepts — 9t Edition 3.47 Silberschatz, Galvin and Gagne © 2013

V4 ﬂf;m.s
&r//ﬂﬁ/“ ; 4
LR \pv V d

r Examples of IPC Systems — Windows

t'&" s

m Message-passing centric via advanced local procedure call (LPC) facility
e Only works between processes on the same system
e Uses ports (like mailboxes) to establish and maintain communication channels
e Communication works as follows:
» The client opens a handle to the subsystem’s connection port object.
» The client sends a connection request.

» The server creates two private communication ports and returns the handle to one of them
to the client.

» The client and server use the corresponding port handle to send messages or callbacks and
to listen for replies.

Operating System Concepts — 9t Edition 3.48 Silberschatz, Galvin and Gagne © 2013

&/"‘f Yy
X 8

“»77 Local Procedure Calls in Windows XP

Client

Server

Connection
request Connection Handle
Port
Handle Client
Communication Port
Server Handle

Communication Port

g

Operating System Concepts — 9" Edition

Shared
Section Object
(< = 256 bytes)

%

3.49

Silberschatz,

Galvin and Gagne 02013

-‘;«sﬂ"hi . . " .
>’ Communications in Client-Server Systems

B Sockets

B Remote Procedure Calls

m Pipes

B Remote Method Invocation (Java)

Operating System Concepts — 9" Edition 3.50 Silberschatz, Galvin and Gagne © 2013

SN Sockets

t'&" \é =3

m A socketis defined as an endpoint for communication

m Concatenation of IP address and port — a number included at start of message packet to
differentiate network services on a host

m The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

®m Communication consists between a pair of sockets

m All ports below 1024 are well known, used for standard services

m Special IP address 127.0.0.1 (loopback) to refer to system on which process is running

Operating System Concepts — 9t Edition 3.51 Silberschatz, Galvin and Gagne © 2013

)~

Xl Socket Communication

| &

Iz

-
e\

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80)

A X
Operating System Concepts — 9" Edition 3.52 Silberschatz, Galvin and Gagne © 2013

s

.

(\}L‘, ‘\&:;

Sockets In Java

m Three types of sockets
e Connection-oriented (TCP)
e Connectionless (UDP)

e MulticastSocket class— data can
be sent to multiple recipients

m Consider this “Date” server:

Operating System Concepts — 9t Edition

import java.net.*;
import java.io.x*;

public class DateServer

{
public static void main(String[] args) {
try {
ServerSocket sock = new ServerSocket(6013);
/* now listen for connections */
while (true) {
Socket client = sock.accept();
PrintWriter pout = new
PrintWriter(client.getOutputStream(), true);
/* write the Date to the socket */
pout.println(new java.util.Date().toString());
/* close the socket and resume */
/* listening for connections */
client.close();
}
}
catch (I0Exception ioe) ({
System.err.println(ioe);
}
}
}
&3 =N
AU 20
3.53 Silberschatz, Galvin and Gagne © 2013

~57 Remote Procedure Calls

®m Remote procedure call (RPC) abstracts procedure calls between processes on networked systems
e Again uses ports for service differentiation

B Stubs - client-side proxy for the actual procedure on the server

B The client-side stub locates the server and marshalls the parameters

m The server-side stub receives this message, unpacks the marshalled parameters, and performs the
procedure on the server

® On Windows, stub code compile from specification written in Microsoft Interface Definition Language
(MIDL)

m Data representation handled via External Data Representation (XDL) format to account for different
architectures

e Big-endian and little-endian
B Remote communication has more failure scenarios than local
e Messages can be delivered exactly once rather than at most once
m OStypically provides a rendezvous (or matchmaker) service to connect client and server

Operating System Concepts — 9t Edition 3.54 Silberschatz, Galvin and Gagne © 2013

S5 Execution of RPC

Operating System Concepts — 9" Edition

3.55

(‘g"" \\A:;
client messages server
user calls kernel
to send RPC
message to
procedure X
From: client
kernel sends To: server matchmaker
message to Eort: rﬁatchmaker . receives
matchmaker to F{.e' address message, looks
find port number f0|.' RPC X up answer
k 4
From: server
kernel places To: client matchmaker
port Pin user (= Port: kernel replies to client
RPC message Re: RPC X with port P
Port: P
From: client daemon
kernel sends To: server _| listening to
RPC Port: port P "| port P receives
<contents> message
v
_ From: RPC daemon
kernel receives Port: P processes
reply, passes - To: client request and
it to user Port: kernel processes send
<output> output

Silberschatz, Galvin and Gagne © 2013

=

e

2 Remote Method Invocation

B Remote Method Invocation (RMI) is a Java
mechanism similar to RPCs

B RMI allows a Java program on one machine to

iInvoke a method on a remote object
JVM

JVM

Java @-
program

Operating System Concepts — 9t Edition 3.56 Silberschatz, Galvin and Gagne © 2013

,‘?’
¢

" /”‘”m'k : .
5 Marshalling Parameters
client remote object
val = server.someMethod(A,B) boolean someMethod (Object x, Object y)
{ implementation of someMethod
A
}
, P
stub skeleton
A A

A, B, someMethod

boolean return value

AN,
e
;: o o \:‘\)
P W<
/4 WV L |
el “i’t';*.

Operating System Concepts — 9t Edition 3.57 Silberschatz, Galvin and Gagne © 2013

’ M,ﬁm.l

{&L. ‘\é:;

® Acts as a conduit allowing two processes to communicate

m |ssues
e Is communication unidirectional or bidirectional?
e In the case of two-way communication, is it half or full-duplex?
e Must there exist a relationship (i.e. parent-child) between the communicating processes?
e Can the pipes be used over a network?

Operating System Concepts — 9t Edition 3.58 Silberschatz, Galvin and Gagne © 2013

;lg

f,

7 Ordinary Pipes

® Ordinary Pipes allow communication in standard producer-consumer style
® Producer writes to one end (the write-end of the pipe)

m Consumer reads from the other end (the read-end of the pipe)

B Ordinary pipes are therefore unidirectional

® Require parent-child relationship between communicating processes

parent child
fd(0) fd(1) fd(0) fd(1)

®m Windows calls these anonymous pipes

m See Unix and Windows code samples in textbook

Operating System Concepts — 9t Edition 3.59 Silberschatz, Galvin and Gagne © 2013

:@
(%

f,

] el

g7 Named Pipes

(\}L‘, ‘\&:;

®m Named Pipes are more powerful than ordinary pipes

®m Communication is bidirectional

® No parent-child relationship is necessary between the communicating processes
B Several processes can use the named pipe for communication

® Provided on both UNIX and Windows systems

A PAN
Operating System Concepts — 9t Edition 3.60 Silberschatz, Galvin and Gagne © 2013

Exercise (1/3)

Operating System Concepts — 9t Edition _ Silberschatz, Galvin and Gagne © 2013

Exercise (2/3)

Operating System Concepts — 9t Edition _ Silberschatz, Galvin and Gagne © 2013

Exercise (3/3)

Operating System Concepts — 9t Edition 3.63 Silberschatz, Galvin and Gagne © 2013

