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Knowledge-Base agent

• A knowledge-based agent can combine general knowledge 
with current percepts to infer hidden aspects of the current 
state prior to selecting actions. 

• The central component of a knowledge-based agent is its 
knowledge base, or KB. Informally, a knowledge base is a set 
of sentences.

• Each sentence is expressed in a language called a knowledge 
representation language and  some assertion about the 
world.



A knowledge-based agent is composed of:

1. Knowledge base: domain-specific content.

2. Inference mechanism: domain-independent 

algorithms.



Knowledge based agent
The agent must be able to:

• Represent states, actions, etc.

• Incorporate new percepts

• Update internal representations of the world 

• Deduce hidden properties of the world 

• Deduce appropriate actions

Declarative approach to building an agent:

• Add new sentences: Tell it what it needs to know

• Query what is known: Ask itself what to do – answers should follow 
from the KB



THE WUMPUS WORLD

• The wumpus world is a cave consisting of rooms connected by 
passageways.

• Lurking somewhere in the cave is the wumpus, a beast that eats 
anyone who enters its room.

• The wumpus can be shot by an agent, but the agent has only one 
arrow

• Some rooms contain bottomless pits that will trap anyone who 
wanders into these rooms (except for the wumpus, which is too big to 
fall in).



THE WUMPUS WORLD

• 4 X 4 grid of rooms
• Squares adjacent to Wumpus are smelly 
• Squares adjacent to pit are breezy
• Glitter iff gold is in the same square
• Shooting kills Wumpus if you are facing it
• Wumpus emits a horrible scream when it is killed 

that can be heard anywhere
• Shooting uses up the only arrow
• Grabbing picks up gold if in same square
• Releasing drops the gold in same square 



THE WUMPUS WORLD PEAS

Performance measure: 

gold +1000, death (eaten or falling in a pit) -1000, 

-1 per action taken, -10 for using the arrow.

The games ends either when the agent dies or 

comes out of the cave.
Environment:

• 4 X 4 grid of rooms

• Agent starts in square [1,1] facing to the right

• Locations of the gold, and Wumpus are chosen 

randomly  with a uniform distribution from all 

squares except [1,1]

• Each square other than the start can be a pit 
with probability of 0.2



THE WUMPUS WORLD PEAS

Actuators:
Left turn, Right turn, Forward, Grab, Release, 
Shoot 
Sensors:
Stench, Breeze, Glitter, Bump, Scream
Represented as a 5-element list
Example: [Stench, Breeze, None, None, None]



Wumpus World Characterization

Observable? No—only local perception

Deterministic? Yes—outcomes exactly specified

Episodic? No—sequential at the level of actions

Static? Yes—Wumpus and Pits do not move

Discrete? Yes

Single-agent? Yes—Wumpus is essentially a natural feature



Exploring Wumpus world



Exploring Wumpus world



Logic 

• When most people say ‘logic’, they mean either propositional 
logic or first-order predicate logic

Any ‘formal system’ can be considered a logic if it has:
– a well-defined syntax;
– a well-defined semantics; and
– a well-defined proof-theory.

• The syntax of a logic defines the syntactically acceptable objects 
of the language, which are properly called well-formed formulae 
(wff). 

• The semantics of a logic associate each formula with a meaning.
• Inference procedures (or a proof theory) define a means of 

deriving formulas from other formulas.



Propositional Logic (0th Order logic) 

Definition: A proposition is a statement that can be either true or 
false; it must be one or the other, and it cannot be both.
Definition: A proposition is a declarative sentence that is either 
true (denoted either T or 1) or false (denoted either F or 0)
EXAMPLES. The following are propositions:
– the reactor is on;
– the wing-flaps are up;
– John Major is prime minister.
whereas the following are not:
– are you going out somewhere?
– Did John go to the store?
– x is greater than 2
– Look out!



Propositional Logic (0th Order logic) 

• Variables are used to represent propositions. The most 
common variables used are p, q, and r.

Logical Operators:

• Unary Operator negation: “not p”, ¬p.

• Binary Operators:

(a) conjunction: “p and q”, p ∧ q. 

(b) disjunction: “p or q”, p ∨ q. 

(c) exclusive or: “exactly one of p or q”, “p xor q”, p ⊕ q. 

(d) implication: “if p then q”, p → q. 

(e) biconditional: “p if and only if q”, p iff q,  p ↔ q.



Negation Operator, “not”, has symbol ¬

• The negation operator is a unary operator which, when applied to a 
proposition p, changes the truth value of p.

• if p is true, its negation is false

Example: 

p: This book is interesting.

¬p can be read as:
This book is not interesting. 
This book is uninteresting. 
It is not the case that this book is interesting. 

• Another notation commonly used for the negation of p is ∼ p. 



Conjunction Operator, “and”, has symbol ∧.

The conjunction operator is the binary operator which, when 
applied to two propositions p and q, yields the proposition “p and 
q”, denoted p∧ q. The conjunction p∧ q of p and q is the 
proposition that is true when both p and q are true and false 
otherwise.



Disjunction Operator: “or”, has symbol ∨

• The disjunction operator is the binary operator which, when applied to 
two propositions p and q, yields the proposition “p or q”, denoted p ∨ q. 
The disjunction p ∨ q of p and q is the proposition that is true when either 
p is true, q is true, or both are true, and is false otherwise.



Exclusive Or. Exclusive Or Operator, “xor”, has symbol ⊕

• The exclusive or is the binary operator which, when applied to two 
propositions p and q yields the proposition “p xor q”, denoted p ⊕ q, 
which is true if exactly one of p or q is true, but not both. It is false if both 
are true or if both are false.



Implication Operator, “if...then...”, has symbol →

We will write p  q for the conditional “if p then q”

In this conditional, the thing before the (p in the example) is called the antecedent, premise, 
or hypothesis. The thing after the (q in the example)  is called the conclusion or consequence .

“If p then q” is false precisely when p is true but q is false.

Equivalent Forms of “If p then q”: 
• p implies q 
• If p, q 
• p only if q 
• p is a sufficient condition for q 
• q if p 
• q whenever p 
• q is a necessary condition for p 

.



Implication Operator, “if...then...”, has symbol →

For the compound statement p → q :

• p is called the premise, hypothesis, or the antecedent. 

• q is called the conclusion or consequent. 

• q → p is the converse of p → q. 

• ¬p → ¬q is the inverse of p → q.

• ¬q → ¬p is the contrapositive of p → q.

.



Biconditional Operator, ”if and only if”, has symbol ↔

• The biconditional statement is equivalent to (p → q) ∧ (q → p). In 
other words, for p ↔ q to be true we must have both p and q true or 
both false.



NAND and NOR Operators

• NAND (that is, not and), is a binary connective, written symbolically as p I q

• The NOR Operator (not or), which has symbol ↓ , written symbolically p ↓ q



Tautology and Contradiction

Definitions: 

A compound proposition that is always true for all possible truth values of 
the propositions is called a tautology. 

A compound proposition that is always false is called a contradiction. 

A proposition that is neither a tautology nor contradiction is called a 
contingency. 

Example: p ∨ ¬p is a tautology.



Tautology and Contradiction

Definitions: 

A compound proposition that is always true for all possible truth values of 
the propositions is called a tautology. 

A compound proposition that is always false is called a contradiction. 

A proposition that is neither a tautology nor contradiction is called a 
contingency. 

Example: p ∧ ¬p is a contradiction.



Logical equivalence

DeMorgan's Laws:

1) ¬( p ∨ q ) <=> ¬p ∧ ¬q 

2) ¬( p ∧ q ) <=> ¬p ∨ ¬q



Equivalence

Equivalent statements are important for logical reasoning since they can be 
substituted and can help us to: 

(1) make a logical argument, and (2) infer new propositions

Example: p q is equivalent to ¬q¬p (contrapositive)



Important logical equivalences

• Identity

p ∧ T <=> p 

p ∨ F <=> p 

• Domination 

p ∨ T <=> T 

p ∧ F <=> F  

• Idempotent

p ∨ p <=> p 

p ∧ p <=> p

• Double negation

¬(¬p) <=> p

• Commutative

p ∨ q <=> q ∨ p 

p ∧ q <=> q p

• Associative

(p ∨ q) ∨ r <=> p ∨ (q ∨ r) 

(p ∧ q) ∧ r <=> p ∧ (q ∧ r)

• Distributive

P ∨ (q ∧ r) <=> (p ∨ q) ∧ (p ∨ r) 

p ∧ (q ∨ r) <=> (p ∧ q) ∨ (p ∧ r) 

• Other useful equivalences 

p ∨ ¬p <=> T 

p ∧ ¬p <=> F 

p  q <=> (¬p ∨ q)



Show that ¬[p ∨ ¬(¬q ∨ ¬r)] is logically equivalent to (p ∨ q) → ¬(p ∨ r)



Entailment (|=)

• Entailment means that one thing follows from another:

• Knowledge base KB entails sentence α if and only if: 
 α is true in all interpretations/worlds in which KB is true

 if KB is true then α must be true

Write KB |= α for KB entails α, So:

KB |= α iff for every interpretation I, if I |= KB then I |= α. 

Or

If M(α) is the set of all models of α, then KB |= α iff M(KB) ⊆ M(α)



Entailment (|=)
Entailment means that one thing follows from another:

Consider: 

If it rains John takes an umbrella 

If John takes an umbrella he doesn’t get wet 

If it doesn’t rain then John doesn’t get wet. 

Show: 

John doesn’t get wet. 

Propositions :

r: It rains 

u: John takes an umbrella 

w: John gets wet.

Query {r  u, u  ¬w, ¬r  ¬w} |= ¬w

Now Prove that  {r  u, u  ¬w, ¬r  ¬w} |= ¬w 



Solving logical inference problem

How to design the procedure that answers:

Three approaches:

1) Truth-table approach

2)  Inference rules

3) Conversion to the inverse SAT problem

– Resolution-refutation



Properties of inference solutions
1) Truth-table approach:

– Blind

– Exponential in the number of variables

2) Inference rules:

– More efficient

– Many inference rules to cover logic

3) Conversion to SAT - Resolution refutation:

– More efficient

– Sentences must be converted into CNF

– One rule – the resolution rule - is sufficient to perform

all inferences



Truth table approach:
A two steps procedure:

1. Generate table for all possible interpretations

2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: KB= (A ∨ C) ∧ (B ∨ ~C)   α=(A ∨ B)

Problem with the truth table approach:

The truth table is exponential in the number of propositional

symbols (we checked all assignments)

Observation: KB is true only on a small subset interpretations

Solution:

Inference rules approach

-Start from entries for which KB is True.

-Generate new sentences from the existing ones



Inference rules approach:
Approach:

• Start from KB

• Infer new sentences that are true from existing KB sentences

• Repeat till α is proved (inferred true) or no more sentences can be proved

Rules:

(i) Equivalence rules: Logical equivalence rules

(ii) Inference rules:

Logical equivalences are discussed in the previous slides



Inference Rules



Inference Rules



Inference Rules
• Logical inference creates new sentences that logically follow 

from a set of sentences (KB)
• An inference rule is sound if every sentence X it produces from a 

KB logically follows from the KB
–i.e., inference rule creates no contradictions

• An inference rule is complete if it can produce every expression 
that logically follows from (is entailed by) the KB

–Note analogy to complete search algorithms



Inference rules approach.



Inference rules approach.



Inference rule approach and Normal forms
Problems with  inference rule approach:

-Too many different rules one can apply

-Many new sentence are just equivalent sentences

Question:

-Can we simplify inferences using one of the normal forms?

Normal forms:

1) Conjunctive normal form (CNF)

Conjunction of clauses (clauses include disjunctions of literals)

2) Disjunctive normal form (DNF)

Disjunction of terms (terms include conjunction of literals)



Normal forms
• A formula is in conjunctive normal form (CNF, clause normal form), if it is a conjunction of 

disjunctions of literals (or in other words, a conjunction of clauses).

• A formula is in disjunctive normal form (DNF), if it is a disjunction of conjunctions of literals.

• Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

• A formula in CNF is valid, if and only if each of its disjunctions contains a pair of complementary 
literals P and ¬P .

• Conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair 
of complementary literals P and ¬P .



Conversion to a CNF



Resolution algorithm

• Convert KB to the CNF form

• Now KB is in CNF

– KB = AND of all the sentences in KB

– KB sentence = clause = OR of literals

– Literal = propositional symbol or its negation

• Find two clauses in KB, one of which contains a literal and the other 
its negation

• Cancel the literal and its negation

• Bundle everything else into a new clause

• Add the new clause to KB



Inference problem and satisfiability



Inference problem and satisfiability



Resolution Rule



Resolution Rule
A KB is a set of sentences all of which are true, i.e., a conjunction 
of sentences
• To use resolution, put KB into conjunctive normal form (CNF)

– Each sentence is a disjunction of one or more literals   
(positive or negative atoms)

• Every KB can be put into CNF, it's just a matter of rewriting its 
sentences using standard tautologies, e.g.:

PQ ≡ ~P ∨ Q



Resolution refutation
1. Add negation of goal to the KB

2. Convert all sentences in KB to CNF

3. Find all pairs of sentences in KB with complementary literals that 
have not yet been resolved

4. If there are no pairs stop else resolve each pair, by adding the result 
to the KB and go to 2

5. If we derived an empty clause (i.e., a contradiction) then the 
conclusion follows from the KB

6. If we did not, the conclusion cannot be proved from the KB



Example: Resolution

α =





Summary
Logical agents apply inference to a knowledge base to derive new 
information and make decisions.

Basic concepts of logic:

– syntax: formal structure of sentences

– semantics: truth of sentences wrt models

– entailment: necessary truth of one sentence given another

– inference: deriving sentences from other sentences

– soundness: derivations produce only entailed sentences

– completeness: derivations can produce all entailed sentences



Propositional logic limitations

(1) Statements that hold for many objects must be enumerated
Solution: make statements with variables

(2) Statements that define the property of the group of objects
Solution: make statements with quantifiers

(i) Universal quantifier –the property is satisfied by all members of the group

(ii) Existential quantifier – at least one member of the group satisfy the property

(3) Not expressive enough for most problems



First Order Logic (FOL)

• FOPL is also called predicate calculus , or Predicate logic

• Predicates are used to describe certain properties or 
relationships between individuals or objects.

• Quantifiers indicate how frequently a certain statement is true. 
Specifically, the universal quantifier is used to indicate that a 
statement is always true, whereas the existential quantifier 
indicates that a statement is sometimes true.

• Predicate Logic represented using constants, variables and 
predicates



First Order Logic (FOL)
• Constant –models a specific object

Examples: “John”, “France”, “7”

• Variable – represents object of specific type (defined by the 
universe of discourse)

Examples: x, y (universe of discourse can be people, students, numbers)

• Predicate - over one, two or many variables or constants.

– Represents properties or relations among objects

Examples: Red(car23), student(x), married(John, Ann)



Predicate Calculus: Syntax

The Domain (universe of discourse): The universe of discourse or 
domain is the collection of all persons, ideas, symbols, data structures, 
and so on, that affect the logical argument under consideration. The 
elements of the domain are called individuals or objects.

Predicates:  Properties or relations among individuals or objects 
referred as predicates.

Variables:  are frequently chosen from the end of the alphabet;

that is x, y and z



First Order Logic (FOL):Quantifiers



First Order Logic (FOL):Quantifiers

Universal quantifier:   The universal quantifier allows us to build formulae 
that are true for all objects.
Existential quantifier: The existential quantifier allows us to build 
formulae that are true for at least one object.

When ∀x P(x) and ∃x P(x) are true and false?



Translation with quantifiers

Sentence:  All KIIT students are smart.
Assume: the domain of discourse of x are KIIT students
Translation: ∀x Smart(x)
Assume: the universe of discourse are students (all students):

∀x at(x,KIIT)  Smart(x)
Assume: the universe of discourse are people:

∀x student(x) ∧ at(x, KIIT)  Smart(x) 



Translation with quantifiers

Sentence: Someone at KIIT is smart.
Assume: the domain of discourse are all KIIT affiliates
Translation: ∃x Smart(x)
Assume: the universe of discourse are people:

∃x  at(x , KIIT) ∧ Smart(x)



Translation with quantifiers

Assume two predicates S(x) and P(x)

Universal statements typically tie with implications
• All S(x) is P(x)

∀x ( S(x)  P(x) )
• No S(x) is P(x)

∀x( S(x)   ¬P(x) )

Existential statements typically tie with conjunctions
• Some S(x) is P(x)

∃x (S(x) ∧ P(x) )
• Some S(x) is not P(x)

∃x (S(x) ∧ ¬P(x) )



Free variable and bound variable

A variable is bound if it is under a quantifier with the same name (the 
occurrence of the variable close to the quantifier is called binding variable). 
If this is not the case, the variable is free. 

Example, in the expression ∀x(P (x) → Q(x)), the variable x appears three times and each 
time x is a bound variable.

Example, ∀z(P (z) ∧ Q(x)) ∨ ∃yQ(y). Here all occurrences of z and y are bound, Only 
one variable x is free.



Order of quantifiers
The order of nested quantifiers matters if quantifiers are of
different type
• ∃x∀x P(x,y) is not the same as ∀x ∃x P(x,y).

Example:
• Assume P(x,y) denotes “x loves y”
• Then: ∀x ∃x L(x,y)
• Translates to: Everybody loves somebody.
• And: ∃x∀x L(x,y)
• Translates to: There is someone who is loved by everyone.

***The meaning of the two is different.
* *The order of nested quantifiers does NOT MATTER if quantifiers are of the SAME type
**The order of nested quantifiers MATTER if quantifiers are of the NOT same type



Inference in FOL : Example
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Inference in FOL: Example



Inference in FOL: Example



First order Predicate Logic
• Mary loves everyone.  ∀x love (Mary, x), ∀x (love (Mary, x)), (∀x love (Mary, 

x)), (∀x (love (Mary, x))) (All are correct)
• Mary loves everyone: ∀x (person(x) → love (Mary, x))
• Everyone loves himself. ∀x love (x, x) 
• Everyone loves everyone. ∀x∀y love (x, y) 
• Everyone loves Mary. ∀x love (x, Mary)
• Every student smiles. ∀x (student(x) → smile( x)) 
• Every student except George smiles. ∀x ((student(x) & x ≠ George) → smile( 

x)) 
• Everyone walks or talks.∀x (walk (x) ∨ talk (x)) 
• Every student who walks talks. ∀x (student(x) → (walk (x) ∨ talk (x)))  
• Everyone loves someone. ∀x∃y love (x, y) (or) ∃y∀x love (x, y) 
• Someone loves everyone.∃x∀y love (x, y)  (or) ∀y∃x love (x, y) 
• Someone walks and talks.  ∃x(walk (x) ∧ talk (x)) 



First order Predicate Logic
• Every person plays some game. .∀x ∃y Person(x) ⇒ ( Game(y) ∧ Plays(x, y) )

• All games are fun. ∀x Game(x) ⇒ Fun(x)

• For every game, there is a person that plays that game. ∀x ∃y [ Game(x) ∧
Person(y) ] ⇒ Plays(y, x)

• Every person plays every game. ∀x ∃y Game(x) ⇒ [ Person(y) ∧ Plays(y, x) ] 

• Some person plays every game. ∃x ∀y Person(x) ∧ [ Game(y) ⇒ Plays(x, y) ] 

• Some person plays some game. ∃x ∃y Person(x) ∧ Game(y) ∧ Plays(x, y)

• There is some person in Delhi who is smart. ∃x Person(x) ∧ In(x, Irvine) ∧ Smart(x)

• Every person in Delhi is smart. ∀x [ Person(x) ∧ In(x, Irvine) ] ⇒ Smart(x)



First order logic



First order logic

1) All apples are red
∀x (Apple(x) ⇒Red(x))

2) Every person has some person he loves
∀x ∃y Loves(x, y)

3) There is a single person whom everybody loves.
∃y ∀x Loves(x, y)

4) Every dog is owned by someone.
∀ x(Dog(x)) ⇒ ∃ y[Person(y) ∧ Owns(y,x)]

5) John has a dog
∃x. Dog(x) ∧ Owns (John, x)

6) Every DOG is a animal
∀x Dog(x)  animal(x)

7) Some dog is pet
∃x Dog(x)  pet(x)

8) Everyone loves somebody 
∀x. ∃y. Loves(x,y) 
∃y. ∀x. Loves(x,y)

9) Brothers are siblings 
∀x,y Brother(x,y) sibling(x,y)
∀x,y Brother(x,y) <--> sibling(y,x)

19) Ones mother is ones female parent
∀x,y Mother(x,y)  (female(x) ∧ parent(x,y))
∀x,y Mother(x,y) <--> (female(x) ∧ parent(x,y))



Types of Mathematical Logic
1) Propositional logic

Propositions are interpreted as true or false

Infer truth of new propositions

2) First order logic

Contains predicates, quantifiers and variables
• E.g. Philosopher(a)  Scholar(a)
• ∀x, King(x) ∧ Greedy (x)  Evil (x)

Variables range over individuals (domain of discourse)

3) Second order logic

Quantify over predicates and over sets of variables

4) Temporal logic
Truths and relationships change and depend on time

5) Fuzzy logic
Uncertainty, contradictions


