
ARTIFICIAL
INTELLIGENCE
Russell & Norvig
Chapter 6. Constraint Satisfaction Problems

Constraint Satisfaction Problems
•  What is a CSP?

•  Finite set of variables V1, V2, …, Vn
•  Nonempty domain of possible values for each variable

DV1, DV2, … DVn

•  Finite set of constraints C1, C2, …, Cm

•  Each constraint Ci limits the values that variables can take,
•  e.g., V1 ≠ V2

•  A state is defined as an assignment of values to some or all variables.

•  Consistent assignment
•  assignment does not violate the constraints

•  CSP benefits
•  Standard representation pattern
•  Generic goal and successor functions
•  Generic heuristics (no domain specific expertise).

CSPs (continued)
•  An assignment is complete when every variable is mentioned.

•  A solution to a CSP is a complete assignment that satisfies all constraints.

•  Some CSPs require a solution that maximizes an objective function.

•  Examples of Applications:
•  Scheduling of rooms, airline schedules, etc
•  Cryptography
•  Sudoku and lots of other puzzles
•  Registering for classes

CSP example: map coloring

• Variables: WA, NT, Q, NSW, V, SA, T
• Domains: Di={red,green,blue}
• Constraints:adjacent regions must have different colors.

•  E.g. WA ≠ NT

CSP example: map coloring

•  Solutions are assignments satisfying all constraints, e.g.
 {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

Graph coloring
• More general problem than map coloring

• Planar graph = graph in the 2d-plane with no edge
crossings

• Guthrie’s conjecture (1852)
 Every planar graph can be colored with 4 colors or less

•  Proved (using a computer) in 1977 (Appel and Haken)

Constraint graphs

•  Constraint graph:

•  nodes are variables

•  arcs are binary constraints

•  Graph can be used to simplify search
 e.g. Tasmania is an independent subproblem

 (will return to graph structure later)

Varieties of CSPs
• Discrete variables

•  Finite domains; size d ⇒O(dn) complete assignments.
•  E.g. Boolean CSPs: Boolean satisfiability (NP-complete).

•  Infinite domains (integers, strings, etc.)
•  E.g. job scheduling, variables are start/end days for each job
•  Need a constraint language e.g StartJob1 +5 ≤ StartJob3.
•  Infinitely many solutions
•  Linear constraints: solvable
•  Nonlinear: no general algorithm

• Continuous variables
•  e.g. building an airline schedule or class schedule.
•  Linear constraints solvable in polynomial time by LP methods.

Varieties of constraints
•  Unary constraints involve a single variable.

•  e.g. SA ≠ green

•  Binary constraints involve pairs of variables.
•  e.g. SA ≠ WA

•  Higher-order constraints involve 3 or more variables.
•  Professors A, B,and C cannot be on a committee together
•  Can always be represented by multiple binary constraints

•  Preference (soft constraints)
•  e.g. red is better than green often can be represented by a cost for each

variable assignment
•  combination of optimization with CSPs

CSP as a standard search problem
•  A CSP can easily be expressed as a standard search problem.

•  Incremental formulation

•  Initial State: the empty assignment {}

•  Successor function: Assign a value to any unassigned variable provided
that it does not violate a constraint

•  Goal test: the current assignment is complete and consistent

•  Path cost: constant cost for every step (not generally relevant)

•  Can also use complete-state formulation
•  Local search techniques tend to work well

CSP as a standard search problem
•  Solution is found at depth n (if there are n variables).

•  Consider using BFS
•  Branching factor b at the top level is nd
•  At next level is (n-1)d
•  ….

•  end up with n!dn leaves even though there are only dn complete assignments!

Commutativity
•  CSPs are commutative.

•  The order of any given set of actions has no effect on the outcome.

•  Example: choose colors for Australian territories one at a time
•  [WA=red then NT=green] same as [NT=green then WA=red]

•  All CSP search algorithms can generate successors by
considering assignments for only a single variable at each node
in the search tree
 ⇒ there are dn leaves

(will need to figure out later which variable to assign a value to at each

node)

Backtracking search
•  Similar to Depth-first search

•  Chooses values for one variable at a time and backtracks when a variable has no
legal values left to assign.

•  Uninformed algorithm
•  Not good general performance

Backtracking search
function BACKTRACKING-SEARCH(csp) return a solution or failure

 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure

 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ← RRECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure

Backtracking example

Backtracking example

Backtracking example

Backtracking example

Improving CSP efficiency
• Previous improvements on uninformed search

 → introduce heuristics

•  For CSPs, general-purpose methods can give large gains
in speed, e.g.,
•  Which variable should be assigned next?
•  In what order should its values be tried?
•  Can we detect inevitable failure early?
•  Can we take advantage of problem structure?

Note: CSPs are somewhat generic in their formulation, and so the
heuristics are more general compared to methods considered
earlier

Backtracking search
function BACKTRACKING-SEARCH(csp) return a solution or failure

 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure

 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ← RRECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure

Minimum remaining values (MRV)

 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

•  A.k.a. most constrained variable heuristic

•  Heuristic Rule: choose variable with the fewest legal moves
•  e.g., will immediately detect failure if X has no legal values

Degree heuristic for the initial variable

•  Heuristic Rule: select variable that is involved in the largest number of constraints
on other unassigned variables.

•  Degree heuristic can be useful as a tie breaker.

•  In what order should a variable’s values be tried?

Least constraining value

•  Least constraining value heuristic

•  Used to select order of values

•  Heuristic Rule: given a variable choose the least constraining value
•  leaves the maximum flexibility for subsequent variable assignments

Forward checking

•  Can we detect inevitable failure early?
•  And avoid it later?

•  Forward checking idea: keep track of remaining legal values for unassigned
variables.

•  Terminate search when any variable has no legal values.

Forward checking

•  Assign {WA=red}

•  Effects on other variables connected by constraints to WA
•  NT can no longer be red
•  SA can no longer be red

Forward checking

•  Assign {Q=green}

•  Effects on other variables connected by constraints with WA
•  NT can no longer be green
•  NSW can no longer be green
•  SA can no longer be green

•  MRV (minimum remaining values) heuristic would automatically select NT or SA next

Forward checking

•  If V is assigned blue

•  Effects on other variables connected by constraints with WA
•  NSW can no longer be blue
•  SA is empty

•  FC has detected that partial assignment is inconsistent with the constraints and backtracking can
occur.

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ , , , }

X4
{ , ,3, }

X2
{ , ,3,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , ,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , ,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , , , }

X2
{ , ,3,4}

Constraint propagation

•  Solving CSPs with combination of heuristics plus forward checking is more
efficient than either approach alone

•  Forward checking checking does not detect all failures.
•  E.g., NT and SA cannot be blue

Constraint propagation
•  Techniques like Constraint Propagation (CP) and Forward

Checking (FC) are in effect eliminating parts of the search
space
•  Somewhat complementary to search

• Constraint propagation goes further than FC by repeatedly
enforcing constraints locally
•  Needs to be faster than actually searching to be effective

• Arc-consistency (AC) is a systematic procedure for
constraining propagation (don’t worry about details)

Trade-offs
• Running stronger consistency checks…

•  Takes more time
•  But will reduce branching factor and detect more inconsistent

partial assignments

•  No “free lunch”

Local search for CSPs
•  Use complete-state representation

•  Initial state = all variables assigned values
•  Successor states = change 1 (or more) values

•  For CSPs
•  allow states with unsatisfied constraints (unlike backtracking)
•  operators reassign variable values
•  hill-climbing with n-queens is an example

•  Variable selection: randomly select any conflicted variable

•  Value selection: min-conflicts heuristic
•  Select new value that results in a minimum number of conflicts with the other variables

Local search for CSP
function MIN-CONFLICTS(csp, max_steps) return solution or failure

 inputs: csp, a constraint satisfaction problem
 max_steps, the number of steps allowed before giving up

 current ← an initial complete assignment for csp
 for i = 1 to max_steps do
 if current is a solution for csp then return current
 var ← a randomly chosen, conflicted variable from VARIABLES[csp]
 value ← the value v for var that minimize CONFLICTS(var,v,current,csp)
 set var = value in current
 return failure

Advantages of local search

•  Local search can be particularly useful in an online setting
•  Airline schedule example

•  E.g., mechanical problems require than 1 plane is taken out of service
•  Can locally search for another “close” solution in state-space
•  Much better (and faster) in practice than finding an entirely new schedule

•  The runtime of min-conflicts is roughly independent of problem size.
•  Can solve the millions-queen problem in roughly 50 steps.

•  Why?
•  n-queens is easy for local search because of the relatively high density of solutions

in state-space

