
ARTIFICIAL 
INTELLIGENCE 
Russell & Norvig 
Chapter 6.  Constraint Satisfaction Problems 



Constraint Satisfaction Problems 
•  What is a CSP? 

•  Finite set of variables V1, V2, …, Vn 
•  Nonempty domain of possible values for each variable  

DV1, DV2, … DVn 
 
•  Finite set of constraints C1, C2, …, Cm 

•  Each constraint Ci limits the values that variables can take,  
•  e.g., V1 ≠ V2 

•  A state is defined as an assignment of values to some or all variables. 

•  Consistent assignment 
•  assignment does not violate the constraints 

•  CSP benefits 
•  Standard representation pattern 
•  Generic goal and successor functions 
•  Generic heuristics (no domain specific expertise). 



CSPs (continued) 
•  An assignment is complete when every variable is mentioned.  

•  A solution to a CSP is a complete assignment that satisfies all constraints. 

•  Some CSPs require a solution that maximizes an objective function.  

•  Examples of Applications:  
•  Scheduling of rooms, airline schedules, etc 
•  Cryptography 
•  Sudoku and lots of other puzzles 
•  Registering for classes 



CSP example: map coloring 

• Variables: WA, NT, Q, NSW, V, SA, T 
• Domains: Di={red,green,blue} 
• Constraints:adjacent regions must have different colors. 

•  E.g. WA ≠ NT   



CSP example: map coloring 

•  Solutions are assignments satisfying all constraints, e.g. 
  {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green} 



Graph coloring 
• More general problem than map coloring 

• Planar graph = graph in the 2d-plane with no edge 
crossings 

• Guthrie’s conjecture (1852) 
   Every planar graph can be colored with 4 colors or less 

•  Proved (using a computer) in 1977 (Appel and Haken) 



Constraint graphs 

•  Constraint graph: 

•   nodes are variables 

•   arcs are binary constraints 

•  Graph can be used to simplify search 
            e.g. Tasmania is an independent subproblem 
 
   (will return to graph structure later) 



Varieties of CSPs 
• Discrete variables 

•  Finite domains; size d ⇒O(dn) complete assignments. 
•  E.g. Boolean CSPs: Boolean satisfiability (NP-complete). 

•  Infinite domains (integers, strings, etc.) 
•  E.g. job scheduling, variables are start/end days for each job 
•  Need a constraint language e.g StartJob1 +5 ≤ StartJob3. 
•  Infinitely many solutions 
•  Linear constraints: solvable 
•  Nonlinear: no general algorithm 
  

• Continuous variables 
•  e.g. building an airline schedule or class schedule. 
•  Linear constraints solvable in polynomial time by LP methods. 



Varieties of constraints 
•  Unary constraints involve a single variable. 

•  e.g. SA ≠ green 

•  Binary constraints involve pairs of variables. 
•  e.g. SA ≠ WA 

•  Higher-order constraints involve 3 or more variables. 
•  Professors A, B,and C cannot be on a committee together 
•  Can always be represented by multiple binary constraints 

•  Preference (soft constraints)  
•  e.g. red is better than green often can be represented by a cost for each 

variable assignment   
•  combination of optimization with CSPs 



CSP as a standard search problem 
•  A CSP can easily be expressed as a standard search problem. 

•  Incremental formulation 

•  Initial State: the empty assignment {} 

•  Successor function: Assign a value to any unassigned variable provided 
that it does not violate a constraint 

•  Goal test: the current assignment is complete and consistent 

•  Path cost: constant cost for every step (not generally relevant) 

•  Can also use complete-state formulation 
•  Local search techniques tend to work well 



CSP as a standard search problem 
•  Solution is found at depth n (if there are n variables). 

•  Consider using BFS 
•  Branching factor b at the top level is nd  
•  At next level is (n-1)d 
•  …. 

•  end up with n!dn leaves even though there are only dn complete assignments! 



Commutativity 
•  CSPs are commutative. 

•  The order of any given set of actions has no effect on the outcome. 

•  Example: choose colors for Australian territories one at a time 
•  [WA=red then NT=green] same as [NT=green then WA=red] 

•  All CSP search algorithms can generate successors by 
considering assignments for only a single variable at each node 
in the search tree 
   ⇒ there are dn leaves 
 
(will need to figure out later which variable to assign a value to at each 

node) 



Backtracking search 
•  Similar to Depth-first search 

•  Chooses values for one variable at a time and backtracks when a variable has no 
legal values left to assign. 

•  Uninformed algorithm 
•  Not good general performance  



Backtracking search 
function BACKTRACKING-SEARCH(csp) return a solution or failure 

 return RECURSIVE-BACKTRACKING({} , csp) 
 
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure 

 if assignment is complete then return assignment 
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do 
  if value is consistent with assignment according to CONSTRAINTS[csp] then 
   add {var=value} to assignment  
   result ← RRECURSIVE-BACTRACKING(assignment, csp) 
   if result ≠ failure  then return result 
   remove {var=value} from assignment 
 return failure 



Backtracking example 
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Improving CSP efficiency 
• Previous improvements on uninformed search 

 → introduce heuristics 

•  For CSPs, general-purpose methods can give large gains 
in speed, e.g., 
•  Which variable should be assigned next? 
•  In what order should its values be tried? 
•  Can we detect inevitable failure early? 
•  Can we take advantage of problem structure? 

Note: CSPs are somewhat generic in their formulation, and so the 
heuristics are more general compared to methods considered 
earlier 



Backtracking search 
function BACKTRACKING-SEARCH(csp) return a solution or failure 

 return RECURSIVE-BACKTRACKING({} , csp) 
 
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure 

 if assignment is complete then return assignment 
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do 
  if value is consistent with assignment according to CONSTRAINTS[csp] then 
   add {var=value} to assignment  
   result ← RRECURSIVE-BACTRACKING(assignment, csp) 
   if result ≠ failure  then return result 
   remove {var=value} from assignment 
 return failure 



Minimum remaining values (MRV) 

 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 

•  A.k.a. most constrained variable heuristic 

•  Heuristic Rule: choose variable with the fewest legal moves 
•  e.g., will immediately detect failure if X has no legal values 

 



Degree heuristic for the initial variable 

•  Heuristic Rule: select variable that is involved in the largest number of constraints 
on other unassigned variables. 

•  Degree heuristic can be useful as a tie breaker. 

•  In what order should a variable’s values be tried? 



Least constraining value  

•  Least constraining value heuristic 

•  Used to select order of values 

•  Heuristic Rule: given a variable choose the least constraining value 
•   leaves the maximum flexibility for subsequent variable assignments 



Forward checking 

•  Can we detect inevitable failure early? 
•  And avoid it later? 

•  Forward checking idea: keep track of remaining legal values for unassigned 
variables. 

•  Terminate search when any variable has no legal values. 



Forward checking 

•  Assign {WA=red} 

•  Effects on other variables connected by constraints to WA 
•  NT can no longer be red 
•  SA can no longer be red 



Forward checking 

•  Assign {Q=green} 

•  Effects on other variables connected by constraints with WA 
•  NT can no longer be green 
•  NSW can no longer be green 
•  SA can no longer be green 

•  MRV (minimum remaining values) heuristic would automatically select NT or SA next  
 



Forward checking 

•  If V is assigned blue 

•  Effects on other variables connected by constraints with WA 
•  NSW can no longer be blue 
•  SA is empty 

•  FC has detected that partial assignment is inconsistent with the constraints and backtracking can 
occur. 



Example: 4-Queens Problem 

1 

3 

2 

4 

3 2 4 1 

X1 
{1,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 



Example: 4-Queens Problem 

1 

3 

2 

4 

3 2 4 1 

X1 
{1,2,3,4} 

X3 
{1,2,3,4} 

X4 
{1,2,3,4} 

X2 
{1,2,3,4} 



Example: 4-Queens Problem 

1 

3 

2 

4 

3 2 4 1 

X1 
{1,2,3,4} 

X3 
{  ,2,  ,4} 

X4 
{  ,2,3,  } 

X2 
{  ,  ,3,4} 



Example: 4-Queens Problem 

1 

3 

2 

4 

3 2 4 1 

X1 
{1,2,3,4} 

X3 
{  ,2,  ,4} 

X4 
{  ,2,3,  } 

X2 
{  ,  ,3,4} 



Example: 4-Queens Problem 

1 

3 

2 

4 

3 2 4 1 

X1 
{1,2,3,4} 

X3 
{  ,  ,  , } 

X4 
{  ,  ,3,  } 

X2 
{  ,  ,3,4} 



Example: 4-Queens Problem 

1 

3 

2 

4 

3 2 4 1 

X1 
{1,2,3,4} 

X3 
{  ,2,  ,4} 

X4 
{  ,2,3,  } 

X2 
{  ,  ,  ,4} 



Example: 4-Queens Problem 

1 

3 

2 

4 

3 2 4 1 

X1 
{1,2,3,4} 

X3 
{  ,2,  ,4} 

X4 
{  ,2,3,  } 

X2 
{  ,  ,  ,4} 



Example: 4-Queens Problem 

1 

3 

2 

4 

3 2 4 1 

X1 
{1,2,3,4} 

X3 
{  ,2,  , } 

X4 
{  ,  ,3,  } 

X2 
{  ,  ,  ,4} 



Example: 4-Queens Problem 

1 

3 

2 

4 

3 2 4 1 

X1 
{1,2,3,4} 

X3 
{  ,2,  , } 

X4 
{  ,  ,3,  } 

X2 
{  ,  ,  ,4} 



Example: 4-Queens Problem 

1 

3 

2 

4 

3 2 4 1 

X1 
{1,2,3,4} 

X3 
{  ,2,  , } 

X4 
{  ,  ,  ,  } 

X2 
{  ,  ,3,4} 



Constraint propagation 

•  Solving CSPs with combination of heuristics plus forward checking is more 
efficient than either approach alone 

•  Forward checking checking does not detect all failures. 
•  E.g., NT and SA cannot be blue 



Constraint propagation 
•  Techniques like Constraint Propagation (CP) and Forward 

Checking (FC) are in effect eliminating parts of the search 
space 
•  Somewhat complementary to search 

• Constraint propagation goes further than FC by repeatedly 
enforcing constraints locally 
•  Needs to be faster than actually searching to be effective 

• Arc-consistency (AC) is a systematic procedure for 
constraining propagation (don’t worry about details) 



Trade-offs 
• Running stronger consistency checks… 

•  Takes more time 
•  But will reduce branching factor and detect more inconsistent 

partial assignments 

•  No “free lunch”   



Local search for CSPs 
•  Use complete-state representation 

•  Initial state = all variables assigned values 
•  Successor states = change 1 (or more) values 

•  For CSPs 
•  allow states with unsatisfied constraints (unlike backtracking) 
•  operators reassign variable values 
•  hill-climbing with n-queens is an example 

•  Variable selection: randomly select any conflicted variable 

•  Value selection: min-conflicts heuristic 
•  Select new value that results in a minimum number of conflicts with the other variables 



Local search for CSP 
function MIN-CONFLICTS(csp, max_steps) return solution or failure 

 inputs: csp, a constraint satisfaction problem 
  max_steps, the number of steps allowed before giving up   

 
 current ←   an initial complete assignment for csp 
 for i = 1 to max_steps do 
  if current is a solution for csp then return current 
  var ←  a randomly chosen, conflicted variable from VARIABLES[csp] 
  value  ←  the value v for var that minimize CONFLICTS(var,v,current,csp) 
  set var = value in current 
 return failure 

 



Advantages of local search 
 

•  Local search can be particularly useful in an online setting 
•  Airline schedule example 

•  E.g., mechanical problems require than 1 plane is taken out of service 
•  Can locally search for another “close” solution in state-space 
•  Much better (and faster) in practice than finding an entirely new schedule 

•  The runtime of min-conflicts is roughly independent of problem size. 
•  Can solve the millions-queen problem in roughly 50 steps. 

•  Why? 
•  n-queens is easy for local search because of the relatively high density of solutions 

in state-space 

 


