ARTIFICIAL
INTELLIGENCE

Russell & Norvig
Chapter 6. Constraint Satisfaction Problems

Constraint Satisfaction Problems

- What is a CSP?

- Finite set of variables V,, V,, ..., V,
- Nonempty domain of possible values for each variable
DV1, DVZ, PN Dvn

- Finite set of constraints C,, C,, ..., C,,

- Each constraint C, limits the values that variables can take,
- eg., V,#V,

- A state is defined as an assignment of values to some or all variables.

- Consistent assignment
- assignment does not violate the constraints

- CSP benefits
- Standard representation pattern
- Generic goal and successor functions
- Generic heuristics (no domain specific expertise).

S
CSPs (continued)

An assignment is complete when every variable is mentioned.

A solution to a CSP is a complete assignment that satisfies all constraints.

Some CSPs require a solution that maximizes an objective function.

Examples of Applications:
- Scheduling of rooms, airline schedules, etc
- Cryptography
- Sudoku and lots of other puzzles
- Registering for classes

L
CSP example: map coloring

Western
Australia

South

Australia
New South Wales

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: D={red,green,blue}

- Constraints:adjacent regions must have different colors.
- E.g. WA =NT

CSP example: map coloring

=t

vietoria "\
Tasn@

- Solutions are assignments satisfying all constraints, e.g.
{WA=red,NT=green,Q=red, NSW=green,V=red,SA=blue, T=green}

Graph coloring

- More general problem than map coloring

- Planar graph = graph in the 2d-plane with no edge
crossings

- Guthrie’ s conjecture (1852)

Every planar graph can be colored with 4 colors or less

- Proved (using a computer) in 1977 (Appel and Haken)

Constraint graphs

e Constraint graph: @ e
® nodes are variables @"

e arcs are binary constraints

e Graph can be used to simplify search

e.g. Tasmania is an independent subproblem

(will return to graph structure later)

e
Varieties of CSPs

- Discrete variables

- Finite domains; size d =0(d") complete assignments.
- E.g. Boolean CSPs: Boolean satisfiability (NP-complete).

- Infinite domains (integers, strings, etc.)
- E.g. job scheduling, variables are start/end days for each job
- Need a constraint language e.g StartJob, +5 < StartJob,
- Infinitely many solutions
- Linear constraints: solvable
« Nonlinear: no general algorithm

- Continuous variables

- €.g. building an airline schedule or class schedule.
- Linear constraints solvable in polynomial time by LP methods.

Varieties of constraints

- Unary constraints involve a single variable.
- e.g. SA = green

- Binary constraints involve pairs of variables.
- e.g. SA = WA

- Higher-order constraints involve 3 or more variables.
- Professors A, B,and C cannot be on a committee together
- Can always be represented by multiple binary constraints

- Preference (soft constraints)

- e.g. red is better than green often can be represented by a cost for each
variable assignment

- combination of optimization with CSPs

CSP as a standard search problem

- A CSP can easily be expressed as a standard search problem.

- Incremental formulation

- Initial State: the empty assignment {}

- Successor function: Assign a value to any unassigned variable provided
that it does not violate a constraint

- Goal test: the current assignment is complete and consistent

- Path cost. constant cost for every step (not generally relevant)

- Can also use complete-state formulation
- Local search techniques tend to work well

CSP as a standard search problem

- Solution is found at depth n (if there are n variables).

- Consider using BFS
- Branching factor b at the top level is nd
- At next level is (n-1)d

- end up with n!d" leaves even though there are only d"” complete assignments!

Commutativity

- CSPs are commutative.

- The order of any given set of actions has no effect on the outcome.

- Example: choose colors for Australian territories one at a time
- [WA=red then NT=green] same as [NT=green then WA=red]

- All CSP search algorithms can generate successors by
considering assignments for only a single variable at each node
In the search tree

= there are d" leaves

(will need to figure out later which variable to assign a value to at each
node)

Backtracking search

- Similar to Depth-first search

- Chooses values for one variable at a time and backtracks when a variable has no
legal values left to assign.

- Uninformed algorithm
- Not good general performance

Backtracking search

function BACKTRACKING-SEARCH(csp) return a solution or failure
return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure

if assignment is complete then return assignment

var < SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment according to CONSTRAINTS][csp] then

add {var=value} to assignment
result < RRECURSIVE-BACTRACKING(assignment, csp)
if result = failure then return result

remove {var=value} from assignment
return failure

Backtracking example

Backtracking example

Backtracking example

Backtracking example

L
Improving CSP efficiency

- Previous improvements on uninformed search
— introduce heuristics

- For CSPs, general-purpose methods can give large gains
In speed, e.qg.,
- Which variable should be assigned next?
- In what order should its values be tried?
- Can we detect inevitable failure early?
- Can we take advantage of problem structure?

Note: CSPs are somewhat generic in their formulation, and so the
heuristics are more general compared to methods considered
earlier

Backtracking search

function BACKTRACKING-SEARCH(csp) return a solution or failure
return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure

if assignment is complete then return assignment

var < SELECT-UNASSIGNED-VARIABLE(VARIABLES][csp],assignment,csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment according to CONSTRAINTS[csp] then

add {var=value} to assignment
result < RRECURSIVE-BACTRACKING(assignment, csp)
if result = failure then return result

remove {var=value} from assignment
return failure

Minimum remaining values (MRV)

var < SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

- A.k.a. most constrained variable heuristic

- Heuristic Rule: choose variable with the fewest legal moves
- e.g., will immediately detect failure if X has no legal values

Degree heuristic for the initial variable

- Heuristic Rule: select variable that is involved in the largest number of constraints
on other unassigned variables.

- Degree heuristic can be useful as a tie breaker.

- In what order should a variable’s values be tried?

L
Least constraining value

T~

Allows 1 value for SA

-]
<% Allows 0 values for SA

- Least constraining value heuristic

- Used to select order of values

- Heuristic Rule: given a variable choose the least constraining value
leaves the maximum flexibility for subsequent variable assignments

Forward checking

Fy

L

WA NT Q NSW \Y SA T
I I I I I ire

- Can we detect inevitable failure early?
- And avoid it later?

- Forward checking idea: keep track of remaining legal values for unassigned
variables.

- Terminate search when any variable has no legal values.

L
Forward checking

Fo 4

WA NT Q NSW Vv SA T
ENEErE[ErE[ErEEr e E[Er .
| "EErFEErEErE] "E[ErE

- Assign {WA=red}

- Effects on other variables connected by constraints to WA

- NT can no longer be red
- SA can no longer be red

L
Forward checking

Fo 4%

WA NT Q NSW \ SA T

| TEprEErE/EsE] TE[EaE]|
(m] m[e EErE] E[ErE]

- Assign {Q=green}

- Effects on other variables connected by constraints with WA

- NT can no longer be green
- NSW can no longer be green
- SA can no longer be green

- MRV (minimum remaining values) heuristic would automatically select NT or SA next

Forward checking

Fo 4042

WA NT Q NSW v SA T
EfFEEFEENEENEENEIENEIEYE

- If Vis assigned blue

- Effects on other variables connected by constraints with WA

- NSW can no longer be blue
- SAis empty

- FC has detected that partial assignment is inconsistent with the constraints and backtracking can
occCur.

Example: 4-Queens Problem

X1 X2
1 2 3 4 {1I2I3I4} {112I3I4}
X3 X4

{1I2I3I4} {1l2I3I4}

Example: 4-Queens Problem

X1 X2
1 2 3 4 {1I2I3I4} {112I3I4}
X3 X4

{1I2I3I4} {1l2I3I4}

Example: 4-Queens Problem

X1 X2
{1I2I3I4} { 4 I3I4}
X3 X4

{ IZI I4} { I2I3I }

Example: 4-Queens Problem

X1 X2
{1I2I3I4} { 4 I3I4}
X3 X4

{ IZI I4} { I2I3I }

Example: 4-Queens Problem

X1 X2
{1I2I3I4} { 4 I3I4}
X3 X4

{III} {II3I}

Example: 4-Queens Problem

X1 X2
{1I2I3I4} { I 7 I4}
X3 X4

{ IZI I4} { I2I3I }

Example: 4-Queens Problem

X1 X2
{1I2I3I4} { I 7 I4}
X3 X4

{ IZI I4} { I2I3I }

Example: 4-Queens Problem

X1 X2
{1I2I3I4} { I 7 I4}
X3 X4

{ I2I I} { 4 I3l }

Example: 4-Queens Problem

X1 X2
{1I2I3I4} { I 7 I4}
X3 X4

{ I2I I} { 4 I3l }

Example: 4-Queens Problem

X1 X2
{1I2I3I4} { 4 I3I4}
X3 X4

{IZII} {III}

L
Constraint propagation

Fy—45—4%

WA NT Q NSW \' SA T
CIE I T I Ir ICEC 11
| "EErEErEErE] e[]
(] m[e EErE] E[ErE]

- Solving CSPs with combination of heuristics plus forward checking is more
efficient than either approach alone

- Forward checking checking does not detect all failures.
- E.g., NT and SA cannot be blue

Constraint propagation

Techniques like Constraint Propagation (CP) and Forward
Checking (FC) are in effect eliminating parts of the search
space

Somewhat complementary to search

Constraint propagation goes further than FC by repeatedly
enforcing constraints locally
Needs to be faster than actually searching to be effective

Arc-consistency (AC) is a systematic procedure for
constraining propagation (don’t worry about details)

Trade-offs

- Running stronger consistency checks...
- Takes more time

- But will reduce branching factor and detect more inconsistent
partial assignments

- No “free lunch”

Local search for CSPs

- Use complete-state representation
- Initial state = all variables assigned values
- Successor states = change 1 (or more) values

- For CSPs
- allow states with unsatisfied constraints (unlike backtracking)
- operators reassign variable values
- hill-climbing with n-queens is an example

- Variable selection: randomly select any conflicted variable

- Value selection: min-conflicts heuristic
- Select new value that results in a minimum number of conflicts with the other variables

Local search for CSP

function MIN-CONFLICTS(csp, max_steps) return solution or failure
inputs: csp, a constraint satisfaction problem
max_steps, the number of steps allowed before giving up

current <— an initial complete assignment for csp

for i =1 to max_steps do
if current is a solution for csp then return current
var < arandomly chosen, conflicted variable from VARIABLES[csp]
value < the value v for var that minimize CONFLICTS(var,v,current,csp)
set var = value in current

return failure

Advantages of local search

- Local search can be particularly useful in an online setting
- Airline schedule example
- E.g., mechanical problems require than 1 plane is taken out of service
- Can locally search for another “close” solution in state-space
+ Much better (and faster) in practice than finding an entirely new schedule

- The runtime of min-conflicts is roughly independent of problem size.
- Can solve the millions-queen problem in roughly 50 steps.

- Why?

* n-queens is easy for local search because of the relatively high density of solutions
in state-space

