ARTIFICIAL INTELLIGENCE

Russell & Norvig Chapter 4: Local Search Algorithms and Optimization Problems

Local search algorithms

- Some types of search problems can be formulated in terms of optimization
 - We don't have a start state, don't care about the path to a solution
 - We have an objective function that tells us about the quality of a possible solution, and we want to find a good solution by minimizing or maximizing the value of this function

Example: *n*-queens problem

- Put n queens on an n × n board with no two queens on the same row, column, or diagonal
- State space: all possible *n*-queen configurations
- What's the objective function?
 - Number of pairwise conflicts

Hill-climbing (greedy) search

- Idea: keep a single "current" state and try to locally improve it
- "Like climbing mount Everest in thick fog with amnesia"

The state space "landscape"

- How to escape local maxima (minima)?
 - Random restart hill-climbing
- What about "shoulders"?
- What about "plateaus"?

Example: *n*-queens problem

- Put n queens on an n × n board with no two queens on the same row, column, or diagonal
- State space: all possible *n*-queen configurations
- Objective function: number of pairwise conflicts
- What's a possible local improvement strategy?
 - Move one queen within its column to reduce conflicts

Example: *n*-queens problem (cont'd)

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	⊻	13	16	13	16
⊻	14	17	15	⊻	14	16	16
17	Ŵ	16	18	15	⊻	15	⊻
18	14	⊻	15	15	14	⊻	16
14	14	13	17	12	14	12	18

h = 17

Hill-climbing (greedy) search

- Variants: choose first better successor, randomly choose among better successors
- Variants to avoid local maxima, plateaus, shoulders, ridges, etc.

Hill-climbing search

- Is it complete/optimal?
 - No can get stuck in local optima
 - Example: local optimum for the 8-queens problem

Simulated annealing search

- Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency
 - Probability of taking downhill move decreases with number of iterations, steepness of downhill move
 - Controlled by annealing schedule
- Inspired by tempering of glass, metal

Simulated annealing search

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to "temperature"

current \leftarrow MAKE-NODE(problem.INITIAL-STATE)

for t = 1 to \infty do

T \leftarrow schedule(t)

if T = 0 then return current

next \leftarrow a randomly selected successor of current

\Delta E \leftarrow next.VALUE – current.VALUE

if \Delta E > 0 then current \leftarrow next

else current \leftarrow next only with probability e^{\Delta E/T}
```

Simulated annealing search

- If temperature decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching one.
- However:
 - This usually takes impractically long
 - The more downhill steps you need to escape a local optimum, the less likely you are to make all of them in a row

Local beam search

Start with *k* randomly generated states

Repeat

Generate all the successors of all *k* states

If a goal state is generated, stop

Else select the *k* best successors from the complete list

Until some stopping condition

- Better than running *k* greedy searches in parallel.
- Stochastic beam search chooses k successors at random, proportional to the "goodness" of the state.

Genetic algorithms (GA)

- Variant of stochastic beam search, inspired by "natural selection"
- A successor state is generated by combining two parent states
- Start with *k* randomly generated states (**population**)
- A state is represented as a string over a finite alphabet (often a string of 0s and 1s)
- Evaluation function (fitness function). Higher values for better states.
- Produce the next generation of states by selection, crossover, and mutation

Genetic algorithms

Genetic algorithms

function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual inputs: population, a set of individuals

FITNESS-FN, a function that measures the fitness of an individual

repeat

 $\begin{array}{l} new_population \leftarrow \text{empty set} \\ \textbf{for } i = 1 \text{ to SIZE(} population) \textbf{do} \\ x \leftarrow \text{RANDOM-SELECTION(} population, \text{FITNESS-FN}) \\ y \leftarrow \text{RANDOM-SELECTION(} population, \text{FITNESS-FN}) \\ child \leftarrow \text{REPRODUCE}(x, y) \\ \textbf{if (small random probability) then } child \leftarrow \text{MUTATE}(child) \\ add \ child \ \textbf{to } new_population \\ population \leftarrow new_population \\ \textbf{until some individual is fit enough, or enough time has elapsed} \\ \textbf{return the best individual in } population, according to FITNESS-FN \\ \end{array}$

function REPRODUCE(x, y) returns an individual inputs: x, y, parent individuals

 $n \leftarrow \text{LENGTH}(x); c \leftarrow \text{random number from 1 to } n$ return APPEND(SUBSTRING(x, 1, c), SUBSTRING(y, c + 1, n))