ARTIFICIAL
INTELLIGENCE

Russell & Norvig
Chapter 4: Local Search Algorithms and Optimization
Problems

Local search algorithms

- Some types of search problems can be formulated
In terms of optimization

- We don’t have a start state, don’t care about the path
to a solution

- We have an objective function that tells us about
the quality of a possible solution, and we want to find a
good solution by minimizing or maximizing the value of this
function

09 04

Example: n-queens problem

- Put n queens on an n x n board with no two queens on the
same row, column, or diagonal

- State space: all possible n-queen configurations

- What's the objective function?
- Number of pairwise conflicts

L
Hill-climbing (greedy) search

- ldea: keep a single “current” state and try to locally improve it
- “Like climbing mount Everest in thick fog with amnesia”

The state space “landscape”

objectixe function /Tglobal maximum

shoulder

\ local maximum

"flat" local maximum

»state space
current

state

- How to escape local maxima (minima)?
- Random restart hill-climbing
- What about “shoulders™?

- What about “plateaus™?

Example: n-queens problem

- Put n queens on an n x n board with no two queens on the
same row, column, or diagonal

- State space: all possible n-queen configurations
- Objective function: number of pairwise conflicts

- What's a possible local improvement strategy?
- Move one queen within its column to reduce conflicts

= =

Example: n-queens problem (cont'd)

Hill-climbing (greedy) search

function HILL-CLIMBING(problem) returns a state that is a local maximum

current +— MAKE-NODE(problem INITIAL-STATE)

loop do
neighbor «+ a highest-valued successor of current
if neighbor. VALUE < current. VALUE then return current STATE
current < neighbor

- Variants: choose first better successor, randomly
choose among better successors

- Variants to avoid local maxima, plateaus, shoulders,
ridges, efc.

Hill-climbing search

- Is it complete/optimal?
- No — can get stuck in local optima
- Example: local optimum for the 8-queens problem

S
Simulated annealing search

- ldea: escape local maxima by allowing some
"bad" moves but gradually decrease their
frequency

- Probability of taking downhill move decreases with
number of iterations, steepness of downhill move

- Controlled by annealing schedule
- Inspired by tempering of glass, metal

Simulated annealing search

function SIMULATED-ANNEALING(problem , schedule) returns a solution state
inputs: problem, a problem
schedule , a mapping from time to “temperature”

current «— MAKE-NODE(problem INITIAL-STATE)
fori=1toocdo

T — schedule(t)

if 7' =0 then return current

next < a randomly selected successor of current

AFE < next VALUE — current VALUE

if AE > 0 then current < next

else current «— next only with probability e /7

S
Simulated annealing search

- If temperature decreases slowly enough, then
simulated annealing search will find a global
optimum with probability approaching one.

- However:
- This usually takes impractically long

- The more downhill steps you need to escape a local

optimum, the less likely you are to make all of them in a
row

e
| ocal beam search

Start with k randomly generated states
Repeat

Generate all the successors of all k states

If a goal state is generated, stop

Else select the k best successors from the complete list
Until some stopping condition

- Better than running k greedy searches in parallel.

- Stochastic beam search chooses k successors at random,
proportional to the “goodness™ of the state.

Genetic algorithms (GA)

Variant of stochastic beam search, inspired by “natural
selection

A successor state is generated by combining two parent
states

Start with k randomly generated states (population)

A state is represented as a_ string over a finite alphabet
(oﬁen a str(ia g of Os and 1s) J P

Evaluation function (fitness function). Higher values for
better states.

Produce the next Lﬁeneration of states by selection,
crossover, and mutation

Genetic algorithms

3274¢g152

24748552 |24 31%

24752411

24415124 |20 26% 3722124

32543213 N‘ 24415124 24415 24415417

la) (b) Ic) (d) le)
Tnitial Population Fithess Function Selection Cross—0Ovet Mutation

[] %I.I
» g,

32752411 | 23 29%

i

32 75241 1 2474 8552 327485 52

Genetic algorithms

function GENETIC-ALGORITHM(population , FITNESS-FN) returns an individual
inputs: population, a set of individuals
FITNESS-FN, a function that measures the fitness of an individual

repeat
new_population «+— empty set
for i = 1 to S1ZE(population) do
T+ RANDOM-SELECTION(population, FITNESS-FN)
y «+— RANDOM-SELECTION(population , FITNESS-FN)
child « REPRODUCE(z,)
if (small random probability) then child < MUTATE(child)
add child to new_population
population «+— new_population
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to FITNESS-FN

function REPRODUCE(z, y) returns an individual
inputs: z,y, parent individuals

n «— LENGTH(T); ¢ < random number from 1 to n
return APPEND(SUBSTRING(z, 1, c),SUBSTRING(y, c+1,n))

