
ARTIFICIAL
INTELLIGENCE
Russell & Norvig
Chapter 3: Solving Problems by Searching, part 3

Informed (heuristic) search
• Greedy best-first search

• A* search
•  Optimality
•  Admissibility
•  Consistency
•  Controlling memory needs

• Heuristic functions

Informed search
• Uses problem-specific knowledge beyond the definition of

the problem itself

•  Finds solutions more efficiently than uninformed searches

• Greedy best-first

•  Heuristic h(n) is estimated cost of the cheapest path from node n to
a goal state

•  Greedy best-first uses h(n) to choose next node to expand
•  Consider straight-line distance in Romania

Romania with SLD

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Problems with best-first
• Greedy best-first search is not optimal

•  Path found in Romania was AradèSibiuèFagarasèBucharest,
which has path cost 140+99+211 = 450 km

•  Better path would be AradèSibiuèRVèPitestièBucharest, which
has path cost 140+80+97+101 = 418 km (32 km closer)

•  It is also incomplete (consider searching for path from Iasi
to Fagaras) in tree-based search

• Worst-case time and space complexity is O(bm) where m is
the maximum depth of the search space

• Actual performance depends on quality of heuristic

A* search (common best-first search)
• Uses evaluation function
 f(n)=g(n)+h(n)

• g(n) is path cost to node n
• h(n) is estimated cheapest
path from node n to a goal

•  f(n) is estimated cost of
cheapest solution through
node n

n

Goal

g(n)

h(n)

More A*
•  Identical to Uniform cost search except A* uses g+h

instead of g
• When heuristic function h(n) satisfies some conditions, A*

is both complete and optimal.

A* search example

A* search example

A* search example

A* search example

A* search example

A* search example

Admissible heuristics
• A heuristic h(n) is admissible if for every node n,
 h(n) ≤ h*(n), where h*(n) is the true cost to reach the
goal state from n.

• An admissible heuristic never overestimates the cost
to reach the goal, i.e., it is optimistic

• Example: hSLD(n) (never overestimates the actual road
distance)

• Theorem: If h(n) is admissible, A* using TREE-SEARCH
is optimal

Optimality of A* (proof)
•  Suppose some suboptimal goal

G2 has been generated and is in
the fringe. Let n be an
unexpanded node in the fringe
such that n is on a shortest path
to an optimal goal G.

•  f(G2) = g(G2) since h(G2) = 0
•  g(G2) > g(G) since G2 is suboptimal
•  f(G) = g(G) since h(G) = 0
•  f(G2) > f(G) from above
•  h(n) ≤ h*(n) since h is admissible

•  g(n) + h(n) ≤ g(n) + h*(n)
•  f(n) ≤ f(G)

Hence f(G2) > f(n), and A* will never

select G2 for expansion

Consistent heuristics
•  A heuristic is consistent if for every node n, every successor n'

of n generated by any action a,

 h(n) ≤ c(n,a,n') + h(n')

•  If h is consistent, we have

f(n') = g(n') + h(n')
 = g(n) + c(n,a,n') + h(n')
 ≥ g(n) + h(n)
 = f(n)

•  i.e., f(n) is non-decreasing along any path.

•  Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is

optimal

Optimality of A*

•  A* expands nodes in order of increasing f value
•  Gradually adds "f-contours" of nodes
•  Contour i has all nodes with f=fi, where fi < fi+1

Properties of A*
•  It is complete, unless there are infinitely many nodes with f ≤

f(G)
•  It is optimal.
•  It is optimally efficient, that is, no other optimal algorithm is

guaranteed to expand fewer nodes than A* (except on tie-break
among nodes with f(n)=cost of optimal path)

•  Unfortunately
•  space is a problem—keeps all nodes in memory
•  Time is typically exponential since number of states in “goal contour” is

usually exponential in the length of the solution

•  Book has a couple A* variations that attempt to restrict space
usage

Admissible heuristics for 8-puzzle
•  h1(n) = number of misplaced tiles
•  h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

•  h1(S) = ? 8
•  h2(S) = ? 3+1+2+2+2+3+3+2 = 18

Dominance
•  If h2(n) ≥ h1(n) for all n (both admissible)
•  then h2 dominates h1
•  h2 is better for search

•  Typical search costs (average number of nodes expanded):

•  depth=12
 IDS generates 3644035 nodes

 A*(h1) generates 227 nodes
 A*(h2) generates 73 nodes

•  depth=24
 IDS generates too many nodes!

 A*(h1) generates 39135 nodes
 A*(h2) generates 1641 nodes

