ARTIFICIAL
INTELLIGENCE

Russell & Norvig
Chapter 3: Solving Problems by Searching, part 3

Informed (heuristic) search

- Greedy best-first search

- A* search
- Optimality
- Admissibility
- Consistency
- Controlling memory needs

- Heuristic functions

Informed search

- Uses problem-specific knowledge beyond the definition of
the problem itself

- Finds solutions more efficiently than uninformed searches

- Greedy best-first

- Heuristic h(n) is estimated cost of the cheapest path from node n to
a goal state

- Greedy best-first uses h(n) to choose next node to expand
- Consider straight-line distance in Romania

Romania with SLD

Straight-line distance

© Bucharest
Arad
Bucharest
Cralova

Dobreta

86

0
160
232
161
176

151
226
244
241
234

10
193
253
329

199
37+

Greedy best-first search example

366

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Problems with best-first

Greedy best-first search is not optimal

Path found in Romania was Arad=>» Sibiu=»Fagaras=2»Bucharest,
which has path cost 140+99+211 = 450 km

Better path would be Arad=>Sibiu=>»RV=>Pitesti=»Bucharest, which
has path cost 140+80+97+101 = 418 km (32 km closer)

It is also incomplete (consider searching for path from lasi
to Fagaras) in tree-based search

Worst-case time and space complexity is O(b™) where m is
the maximum depth of the search space

Actual performance depends on quality of heuristic

A* search (common best-first search)

- Uses evaluation function
f(n)=g(n)+h(n)

- g(n) is path cost to node n

- h(n) is estimated cheapest
path from node n to a goal

- f(n) is estimated cost of
cheapest solution through
node n

.

g(n) —

e
More A*

- Identical to Uniform cost search except A* uses g+h
instead of g

- When heuristic function h(n) satisfies some conditions, A*
IS both complete and optimal.

A" search example

366=0+366

A" search example

A" search example

imisoara

447=118+329 449=75+374

646=280+366 415=239+176 671=2914380 413=220+193

A" search example

imisoara

447=118+329 449=75+374

526=366+160 417=317+100 553=300+253

A" search example

imisoara

447=118+329 449=75+374

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

A" search example

imisoara

447=118+329 449=75+374

591=338+253 450=450+0 526=366+160

418=418 615=455+160 607=414+193

Admissible heuristics

- A heuristic h(n) is admissible if for every node n,

h(n) < h'(n), where h'(n) is the true cost to reach the
goal state from n.

- An admissible heuristic never overestimates the cost
to reach the goal, i.e., it is optimistic

- Example: hg, 5(n) (never overestimates the actual road
distance)

- Theorem: If h(n) is admissible, A" using TREE-SEARCH
IS optimal

S
Optimality of A" (proof)

- Suppose some suboptimal goal - f(G,) =g(G,) since h(G,)=0
G, has been generated andisin - g(G,) >g(G) since G, is suboptimal
the fringe. Let n be an - f(G) =g(G) since h(G)=0
unexpanded node in the fringe - f(G,) >f(G) from above
such that nis on a shortest path |, h(n) < h*(n) since h is admissible
to an optimal goal G.

start © g(n) + h(n) < g(n) + h'(n)

. - f(n) < f(G)

n Hence f(G,) > f(n), and A" will never
select G, for expansion

@ G,

Consistent heuristics

- A heuristic is g%nsistent If for every node n, every successor n’

of n generated by any action a,

h(n) < c(n,a,n’) + h(n’)
c(n,a,n’))
- If h is consistent, we have @
() =g(m) +h(n) o
= g(n) + c(n,a,n’) + h(n') @
> g(n) + h(n)
=f(n)

- 1.e., f(n) is non-decreasing along any path.

- Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is
optimal

Optimality of A’

- A" expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes
- Contour / has all nodes with f=f, where f, <f,,

L
Properties of A*

- It is complete, unless there are infinitely many nodes with f <
f(G)

- It is optimal.

- It is optimally efficient, that is, no other optimal algorithm is

guaranteed to expand fewer nodes than A* (except on tie-break
among nodes with f(n)=cost of optimal path)

- Unfortunately
- space is a problem—keeps all nodes in memory

- Time is typically exponential since number of states in “goal contour” is
usually exponential in the length of the solution

- Book has a couple A* variations that attempt to restrict space
usage

Admissible heuristics for 8-puzzle

- h,(n) = number of misplaced tiles
- h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

Start State Goal State

- h(S)=78

+ h,(S) =7 3+1+2+2+2+3+3+2 = 18

Dominance

- If h,(n) =2 h,(n) for all n (both admissible)
- then h, dominates h,
- h, is better for search

- Typical search costs (average number of nodes expanded):

- depth=12
IDS generates 3644035 nodes

A*2h1} generates 227 nodes
A'(h,) generates 73 nodes

- depth=24
IDS g;enerates toom
2

A 2h1 generates 3

J ny nodes!
A’(h,) generates 164

a
35 nodes
1 nodes

