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Informed (heuristic) search 
• Greedy best-first search 

• A* search 
•  Optimality 
•  Admissibility 
•  Consistency 
•  Controlling memory needs 
 

• Heuristic functions 



Informed search 
• Uses problem-specific knowledge beyond the definition of 

the problem itself 
 
•  Finds solutions more efficiently than uninformed searches 
 
• Greedy best-first 

•  Heuristic h(n) is estimated cost of the cheapest path from node n to 
a goal state 

•  Greedy best-first uses h(n) to choose next node to expand 
•  Consider straight-line distance in Romania 
 



Romania with SLD 



Greedy best-first search example 
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Greedy best-first search example 



Problems with best-first 
• Greedy best-first search is not optimal 

•  Path found in Romania was AradèSibiuèFagarasèBucharest, 
which has path cost 140+99+211 = 450 km 

•  Better path would be AradèSibiuèRVèPitestièBucharest, which 
has path cost 140+80+97+101 = 418 km  (32 km closer) 

•  It is also incomplete (consider searching for path from Iasi 
to Fagaras) in tree-based search 

• Worst-case time and space complexity is O(bm) where m is 
the maximum depth of the search space 

• Actual performance depends on quality of heuristic 



A* search (common best-first search) 
• Uses evaluation function  
         f(n)=g(n)+h(n) 
 
• g(n) is path cost to node n 
• h(n) is estimated cheapest 
path from node n to a goal 

 
•  f(n) is estimated cost of 
cheapest solution through 
node n 

n 

Goal 

g(n) 

h(n) 



More A* 
•  Identical to Uniform cost search except A* uses g+h 

instead of g 
• When heuristic function h(n) satisfies some conditions, A* 

is both complete and optimal. 



A* search example 
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A* search example 



Admissible heuristics 
• A heuristic h(n) is admissible if for every node n, 
 h(n) ≤ h*(n), where h*(n) is the true cost to reach the 
goal state from n. 

 
• An admissible heuristic never overestimates the cost 
to reach the goal, i.e., it is optimistic 

 
• Example: hSLD(n) (never overestimates the actual road 
distance) 

 
• Theorem: If h(n) is admissible, A* using TREE-SEARCH 
is optimal 

 



Optimality of A* (proof) 
•  Suppose some suboptimal goal 

G2 has been generated and is in 
the fringe. Let n be an 
unexpanded node in the fringe 
such that n is on a shortest path 
to an optimal goal G. 

 

•  f(G2)  = g(G2)  since h(G2) = 0  
•  g(G2) > g(G)  since G2 is suboptimal  
•  f(G)   = g(G)  since h(G) = 0  
•  f(G2)  > f(G)  from above  
•  h(n) ≤ h*(n)  since h is admissible 
 
•  g(n) + h(n) ≤ g(n) + h*(n)  
•  f(n) ≤ f(G) 
 
Hence f(G2) > f(n), and A* will never 

select G2 for expansion 



Consistent heuristics 
•  A heuristic is consistent if for every node n, every successor n' 

of n generated by any action a,  
   

 h(n) ≤ c(n,a,n') + h(n') 
 

•  If h is consistent, we have 
 
f(n')  = g(n') + h(n')  
       = g(n) + c(n,a,n') + h(n')  
       ≥ g(n) + h(n)  
       = f(n) 
 
•  i.e., f(n) is non-decreasing along any path. 
 
•  Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is 

optimal 
 



Optimality of A* 

•  A* expands nodes in order of increasing f value 
•  Gradually adds "f-contours" of nodes  
•  Contour i has all nodes with f=fi, where fi < fi+1 
 



Properties of A* 
•  It is complete, unless there are infinitely many nodes with    f ≤ 

f(G) 
•  It is optimal. 
•  It is optimally efficient, that is, no other optimal algorithm is 

guaranteed to expand fewer nodes than A* (except on tie-break 
among nodes with f(n)=cost of optimal path) 

•  Unfortunately 
•  space is a problem—keeps all nodes in memory 
•  Time is typically exponential since number of states in “goal contour” is 

usually exponential in the length of the solution 
 

•  Book has a couple A* variations that attempt to restrict space 
usage  



Admissible heuristics for 8-puzzle 
•  h1(n) = number of misplaced tiles 
•  h2(n) = total Manhattan distance 
(i.e., no. of squares from desired location of each tile) 
 
 
 
 
 
 
 
 
•  h1(S) = ? 8 
•  h2(S) = ? 3+1+2+2+2+3+3+2 = 18  



Dominance 
•  If h2(n) ≥ h1(n) for all n (both admissible) 
•  then h2 dominates h1  
•  h2 is better for search 
 
•  Typical search costs (average number of nodes expanded): 
 
•  depth=12   
           IDS generates 3644035 nodes 

 A*(h1) generates 227 nodes  
 A*(h2) generates 73 nodes  

•  depth=24  
            IDS generates too many nodes! 

 A*(h1) generates 39135 nodes  
 A*(h2) generates 1641 nodes  

 


