
ARTIFICIAL
INTELLIGENCE
Russell & Norvig
Chapter 3: Solving Problems by Searching, part 2

Problem definition components
1.  Initial State

•  For example, In(Arad)
2.  Possible Actions

•  For state s, Action(s) returns actions that can be executed in s
•  Actions(In(Arad)) = {Go(Sibiu), Go(Timisoara), Go(Zerind)}

3.  Transition Model
•  Successor function, like delta (δ) transitions in finite state machines
•  Together, initial state, actions and transition model define the state

space
4.  Goal Test

•  Similar to “final state”, e.g. {In(Bucharest)}, or abstract property
(checkmate)

5.  Path Cost
•  Agent’s cost function used as internal performance measure. Usually

sum of cost of actions along path from initial state to goal state

Graph Search

Search Strategies
•  A search strategy is defined by picking the order of node

expansion

•  Strategies are evaluated along the following dimensions:
•  completeness: does it always find a solution if one exists?
•  optimality: does it always find a least-cost (optimal) solution?
•  time complexity: number of nodes generated/expanded
•  space complexity: maximum number of nodes in memory

•  Time and space complexity are measured in terms of

•  b: maximum branching factor of the search tree
•  d: depth of the least-cost solution
•  m: maximum depth of the state space (may be ∞)

Nodes and States

1

23

45

6

7

81

23

45

6

7

8

State Node depth = 6

g = 6

state

parent, action

n.state: state associated with node n
n.parent: node in search tree that generated this node
n.action: action that was applied to parent to generate this node
n.path-cost: cost of path from initial state to this node, denoted by g(n)

Informed vs. Uninformed Searches
•  Uninformed (or blind) strategies do not exploit any of the

information contained in a state

•  Breadth-first search (BFS)
•  Uniform cost search
•  Depth-first search (DFS)
•  Depth-limited search
•  Iterative-deepening search (IDS)
•  Bidirectional search

•  Informed (or heuristic) strategies exploit such information
to assess that one node is “more promising” than another

Breadth-first search (BFS)
• Shallowest unexpanded node is chosen for expansion
• Store frontier of nodes in FIFO queue
• Check if goal when generated, since placed on queue and

taken off of queue in same order
• Check to avoid repeated states

• Criteria (b is branching factor; d is depth of goal):

•  Complete? Yes (if some goal at finite depth d, and b is finite)
•  Space? Not great, size of frontier, so O(bd) potentially
•  Time? Nodes generated, b + b2 + b3 + … + bd = O(bd)
•  Optimal? Yes, if all actions have same cost

• Space is normally more of a problem with BFS than time

Pseudocode for BFS

BFS tree for 8-puzzle

Uniform-cost search
• What about when actions have varying costs?
•  For each node n, keep track of the “path cost”, g(n)
• Maintain frontier as a priority queue

• Uniform-cost search expands the node n with the
lowest path cost

• Other differences from BFS:

•  Must check for goal when node chosen for expansion (instead of
when generated)

•  Must also check for each state generated that is in frontier, whether
this new path has lower path cost

Uniform-cost search example
•  Trace with this part of the Romania example

UCS Pseudocode

Uniform cost analysis
• Assume all actions have positive (non-zero) cost, at least ε

• Optimal? Yes, UCS expands nodes in order of optimal
path cost

• Complete? Yes
•  Time and space are harder to characterize
• Assume C* is cost of optimal solution, then time and space

in worst case is O(b1+floor(C*/ε)), which can be worse than
O(bd).

Depth-first search
• Always expand the deepest node in the current frontier
• Uses a LIFO queue (aka stack)
• Commonly implemented with recursion
• Criteria

•  Complete? No: fails in infinite-depth spaces with loops, but is
complete in finite spaces (when avoiding repeated states)

•  Optimal? No.
•  Time? O(bm), where m is maximum depth of any node. Bad if m is

much larger than d
•  Space (only good thing!): Need only store path from root of search

tree and siblings of those nodes, so O(bm)

DFS tree for 8-puzzle

Depth-limited search

• Consider DFS with depth limit l

•  Nodes at depth l are treated as if they have no successors
•  Solves the infinite-path problem
•  If l < d then incomplete
•  If l > d then not optimal

•  Time complexity: O(bl)
• Space complexity: O(bl)

Iterative deepening search
• Best of both BFS and DFS

• BFS is complete but has bad memory usage; DFS has nice
memory behavior but doesn’t guarantee completeness

Bidirectional search
•  Two simultaneous searches from start an goal.

•  Motivation: bd/2 + bd/2 ≠ bd
•  Check whether the node belongs to other fringe before expansion.
•  Space complexity is the most significant weakness.
•  Complete and optimal if both searches are breadth-first.

Comparison of uninformed searches

