ARTIFICIAL
INTELLIGENCE

Russell & Norvig
Chapter 3: Solving Problems by Searching, part 2

Problem definition components

1.

Initial State
- For example, In(Arad)

Possible Actions
- For state s, Action(s) returns actions that can be executed in s
- Actions(In(Arad)) = {Go(Sibiu), Go(Timisoara), Go(Zerind)}

Transition Model
- Successor function, like delta (0) transitions in finite state machines

- Together, initial state, actions and transition model define the state
space

Goal Test

- Similar to “final state”, e.g. {In(Bucharest)}, or abstract property
(checkmate)

Path Cost

- Agent’s cost function used as internal performance measure. Usually
sum of cost of actions along path from initial state to goal state

L
Graph Search

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Search Strategies

- A search strategy is defined by picking the order of node
expansion

- Strategies are evaluated along the following dimensions:
- completeness: does it always find a solution if one exists?
- optimality: does it always find a least-cost (optimal) solution?
- time complexity: number of nodes generated/expanded
- space complexity: maximum number of nodes in memory

- Time and space complexity are measured in terms of
- b: maximum branching factor of the search tree
- d: depth of the least-cost solution
- m: maximum depth of the state space (may be «)

Nodes and States

n.state: state associated with node n

n.parent. node in search tree that generated this node

n.action: action that was applied to parent to generate this node
n.path-cost: cost of path from initial state to this node, denoted by g(n)

parent, action

depth =6
g=6

Informed vs. Uninformed Searches

- Uninformed (or blind) strategies do not exploit any of the
information contained in a state

- Breadth-first search (BFS)

- Uniform cost search

- Depth-first search (DFS)

- Depth-limited search

- lterative-deepening search (IDS)
- Bidirectional search

- Informed (or heuristic) strategies exploit such information
to assess that one node is “more promising” than another

Breadth-first search (BFS)

Shallowest unexpanded node is chosen for expansion

Store frontier of nodes in FIFO queue

Check if goal when generated, since placed on queue and
taken off of queue in same order

Check to avoid repeated states

Criteria (b is branching factor; d is depth of goal):
Complete? Yes (if some goal at finite depth d, and b is finite)
Space? Not great, size of frontier, so O(b9) potentially
Time? Nodes generated, b + b2 + b3 + ... + bd = O(b9)
Optimal? Yes, if all actions have same cost

Space is normally more of a problem with BFS than time

e
Pseudocode for BFS

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node + a node with STATE = problem INITIAL-STATE, PATH-COST =0
if problem . GOAL-TEST(node. STATE) then return SOLUTION(node)
Sfrontier « a FIFO queue with node as the only element
explored « an empty set
loop do
if EMPTY?(frontier) then return failure
node «+ POP(frontier) /* chooses the shallowest node in frontier */
add node STATE to explored
for each action in problem. ACTIONS(node STATE) do
child « CHILD-NODE(problem, node, action)
if child STATE is not in explored or frontier then
if problem GOAL-TEST(child. STATE) then return SOLUTION(child)

frontier « INSERT(child, frontier)

Figure 3.11 Breadth-["rst search on a graph.

BFS tree for 8-puzzle

]

8
6
5

\9
2
1
7

71510

1{6[4

4283

E

8
4
6

2
1
7

8

T

8|3

:LE
1(8(4
7165

6 -‘/7
3
4
5

8
1
6

/7
5

8|3

6|4

715

5

1|6
4

e

2/8|3
1[5[6
.4 715

3
6

1

7|6l

1

2|18|3||2
6
7|5|4]||7[5([4

"

2|3

4

6|5
46

1
=)
7

/

7<)

3
4
[]

8
1
5

2
7
6

3
6

2]l
3
5

8([2][8]3

1[4]3]||1] 4[5

8|3
4
115

3|2
4|7
s5][e

G

AR |
4
5

" BE
1
7

112|13(2]3
e(4|1|8

;

5|(7|€|5)7]|6[5][7]5]5]|7

6
43

Goal

45

71615]7

42

3||2]8[3
1[4()17]1]4

716|156

8
2

24 2 A .”.7\

,\ 28 29 30 31 32 33

40 41

39

38

37

36

6/8|4||6|8|4|[6[4[3)16]|4|5|[6[7[4(|6|7|4)2{1[42

™|+ |0 LI
@ [~ | |~
.27 w|@| -
LS8
oV}
™|+ |0 3.5
@ r~ ||~
N |- o|w |-
()
(aV]
™|+ |0
@ |~
ojw |-
X

4

=
2
1

35

o b S N

20

alalllele]s| 2]l z] s[[2]e M 2] e]a][2]a]3][z] e[z][e] z e] 1

2(6|4)|2

NEEREENEEREAREENE | NERE

34

Uniform-cost search

What about when actions have varying costs?
For each node n, keep track of the “path cost”, g(n)
Maintain frontier as a priority queue

Uniform-cost search expands the node n with the
lowest path cost

Other differences from BFS:

Must check for goal when node chosen for expansion (instead of
when generated)

Must also check for each state generated that is in frontier, whether
this new path has lower path cost

Uniform-cost search example

- Trace with this part of the Romania example

Bucharest

e
UCS Pseudocode

function UNIFORM-COST-SEARCH problem) returns a solution, or failure

node « a node with STATE = problem INITIAL-STATE, PATH-COST =0
frontier « a priority queue ordered by PATH-COST, with node as the only element

explored + an empty set
loop do
if EMPTY?(frontier) then return failure
node « POP(frontier) /* chooses the lowest-cost node in frontier */
if problem . GOAL-TEST(node.STATE) then return SOLUTION(node) _
add node.STATE to explored
for each action in problem . ACTIONS(node.STATE) do
child « CHILD-NODE(problem, node, action)
if child STATE is not in explored or frontier then
frontier « INSERT(child, frontier)
else if child STATE is in frontier with higher PATH-COST then _
replace that frontier node with child

Uniform cost analysis

- Assume all actions have positive (non-zero) cost, at least ¢

- Optimal? Yes, UCS expands nodes in order of optimal
path cost

- Complete? Yes
- Time and space are harder to characterize

- Assume C* is cost of optimal solution, then time and space
in worst case is O(b1*floor(C*/e)) " which can be worse than
O(b9).

L
Depth-first search

- Always expand the deepest node in the current frontier
- Uses a LIFO queue (aka stack)
- Commonly implemented with recursion

- Criteria
- Complete? No: fails in infinite-depth spaces with loops, but is
complete in finite spaces (when avoiding repeated states)
- Optimal? No.
- Time? O(b™), where m is maximum depth of any node. Bad if mis
much larger than d

- Space (only good thing!): Need only store path from root of search
tree and siblings of those nodes, so O(bm)

DFS tree for 8-puzzle

|0

8

-~

of [0
Ofw[«w o<
™
~fo|o @ -
1.7 ol @
of <[w
o || - -
oo w[e=l+]e P o
e SEE
o || o |0 »
@® © ® |© [aV] Rl Ll d .45
™| ~| ©
NSNS e[~
© of cuf ~~
@
— Al ™ | |0
—|®| | L
|~ |©
AN =eV o| |0
<=
||~ N| ©| -~
[aV]
o| | v
o[«]w e el
\ol=To ™ [[0 | o] +|w ~l©
m.mr/816 o[~
-27 ~fo|- @0
o< |0 ()] of <[~
o [wo]|~ - o of ©
-
(aV]
N |-
3.5 .35
N ™| |0 ||~ o <~
® ~ N|©O|~ | ©| ~
Py Py N
FEG
—T=To @ <o | o~
o ||~ o |~ ol o ~
N|©|~
H2 s » o <[w
[+2] of of ~
o (|0 o< v -61
@®|© |~ 0|~
of <[w
.21 o| |- - =
< w of cuf -
® ™~
@

5

2(6|4

1

11 13 14 16 17 22 23 26 27 31

10

Goal

Depth-limited search

- Consider DFS with depth limit /
- Nodes at depth /are treated as if they have no successors
- Solves the infinite-path problem
- If /< d then incomplete
- If /> d then not optimal

- Time complexity: O(b')
- Space complexity: O(bl)

lterative deepening search

- Best of both BFS and DFS

- BFS is complete but has bad memory usage; DFS has nice
memory behavior but doesn’t guarantee completeness

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution
inputs: problem, a problem

for depth+ 0to oc do
result &« DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

end

Bidirectional search

- Two simultaneous searches from start an goal.
- Motivation: b2 + pd2 # pd

- Check whether the node belongs to other fringe before expansion.
- Space complexity is the most significant weakness.
- Complete and optimal if both searches are breadth-first.

AWz S
Gﬁb 15

|\

Comparison of uninformed searches

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time oY)y oplc/dy ow™) oW O(b)
Space Ob*Y) o@®lC /Yy Oo(m) O(bl) O(bd)
Optimal? Yes Yes No No Yes

