ARTIFICIAL
INTELLIGENCE

Russell & Norvig
Chapter 3: Solving Problems by Searching

S
Problem-Solving Agents

- Goal is set of states where goal is achieved

- Must consider level of abstraction to formulate problem
- Which actions are important in problem solution?

- Typically consider situation of solving problem “offline” then
executing the planned solution

- While executing plan, percepts are ignored

Process: Formulate problem =» Search =»Execute

S
Problem-Solving Agents

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
static: segq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state <+— UPDATE-STATE(state, percept)

if seq is empty then do
goal < FORMULATE-GOAL(state)
problem < FORMULATE-PROBLEM(state, goal)
seq < SEARCH(problem)

action < FIRST(seq)

seq <+ REST(seq)

return action

Simple roadmap of Romania

=] Oradea

Jimisoara

Lugoj

Hirsova

Mehadia

120

Eforie

Problem definition components

1.

Initial State
- For example, In(Arad)

Possible Actions
- For state s, Action(s) returns actions that can be executed in s
- Actions(In(Arad)) = {Go(Sibiu), Go(Timisoara), Go(Zerind)}

Transition Model
- Successor function, like delta (0) transitions in finite state machines

- Together, initial state, actions and transition model define the state
space

Goal Test

- Similar to “final state”, e.g. {In(Bucharest)}, or abstract property
(checkmate)

Path Cost

- Agent’s cost function used as internal performance measure. Usually
sum of cost of actions along path from initial state to goal state

Vacuum cleaner world
(% | T 90
(e [T O (&8

-
LCIAQ i E‘QDH
-

il
{

8-puzzle (sliding-block puzzle)

- 3x3 board with 8 numbered tiles and a blank

- Any tile adjacent to blank can slide into blank spot

- States: any configuration, e.g.: 7,2,4,5,0,6,8,3,1

- Initial state: any

- Actions: easiest to specify moving of blank space (ULDR)
- Transitions, Goal, Path Cost?

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8

Start State Goal State

Route-finding problem

- Like the Romania example

- Lots of applications—web sites, in-car systems, airline
systems, etc

- For any of these can define problem with respect to:
- States
- Initial state
- Actions
- Transition model
- Goal test
- Path cost

- Other variations: robot navigation, TSP, etc

Formulating Navigation Problem

- Set of States

- individual cities, e.g., Memphis, Oxford, Batesville, Jackson, New
Orleans, Biloxi, Mobile, Little Rock

- Operators
- freeway routes from one city to another
- e.g., Memphis to Jackson, Biloxi to Mobile

- Start State
- current city where we are, Oxford

- Goal States

- City or set of cities that represent a final destination, e.g., New
Orleans

- Solution
- a sequence of operators which get us there,
- e.g., Oxford, Batesville, Jackson, New Orleans

Tree-based Search

- Basic idea:

- Exploration of state space by generating successors of already-
explored states (a.k.a. expanding states).

- Every state is evaluated: is it a goal state?

- In practice, the solution space can be a graph, not a tree
- E.g., 8-puzzle
- More general approach is graph search

- Tree search can end up repeatedly visiting the same nodes
- Unless it keeps track of all nodes visited
- ...but this could take vast amounts of memory

Tree Search Example

imisoara
“7/ N VAN N
- ~
¢_ Arad O ¢ Fagaras) f\Oradea) flenncu AlcazD _Arad D _lugoj > “Arad _> ¢ Oradea
< < < /[< < ravll < <
. TN . 7N\ 7N\ N R 7N\ g 7N\

Neamt

Tree Search Example

Tree Search

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

L
Graph Search

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Search Strategies

- A search strategy is defined by picking the order of node
expansion

- Strategies are evaluated along the following dimensions:
- completeness: does it always find a solution if one exists?
- optimality: does it always find a least-cost (optimal) solution?
- time complexity: number of nodes generated
- space complexity: maximum number of nodes in memory

- Time and space complexity are measured in terms of
- b: maximum branching factor of the search tree
- d: depth of the least-cost solution
- m: maximum depth of the state space (may be «)

